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Abstract: Background   High-quality phenotype definitions are desirable to enable the extraction
of patient cohorts from large electronic health record (EHR) repositories, and are
characterised by properties such as portability, reproducibility and validity.  Phenotype
libraries, where definitions are stored, have the potential to contribute significantly to
the quality of the definitions they host. In this work, we present a set of desiderata for
the design of a next-generation phenotype library that is able to ensure the quality of
hosted definitions by combining the functionality currently offered by disparate tooling.

Methods   A group of researchers examined work to date on phenotype models,
implementation and validation, as well as contemporary phenotype libraries developed
as a part of their own phenomics communities. Existing phenotype frameworks were
also examined. This work was translated and refined by all the authors into a set of
best practices. 

Results   We present 14 library desiderata that promote high-quality phenotype
definitions, in the areas of modelling, logging, validation and sharing and warehousing. 

Conclusions  There are a number of choices to be made when constructing phenotype
libraries. Our considerations distil the best practices in the field and include pointers
towards their further development to support portable, reproducible, and clinically valid
phenotype design. The provision of high-quality phenotype definitions enables EHR
data to be more effectively used in medical domains.
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Gigascience - Response to reviews

We would like to thank both reviewers for taking the time to produce excellent and in-
depth reviews. Responses to the comments are provided below, many of which
correspond to changes in the original article, and are highlighted in the version with
tracked changes. We hope that we have been able to adequately address all the
concerns.

* Reviewer 1

"In this work, the authors present a set of 13 desiderata to guide the development of
future phenotype libraries.
The work presented here nicely rounds out current and established phenotyping efforts
and established/outlines their suitability and components for a larger and broader
definition of a phenotype library.
The relevant literature is well collected, and with the exception of newer developments
(within the last 9 months) for the OHDSI phenotype library
(https://data.ohdsi.org/PhenotypeLibrary/) and tools
(https://pubmed.ncbi.nlm.nih.gov/31369862/) is highly relevant and up to date.
Each current tool is nicely analyzed and dissected by the authors to deliberate over the
items that are included in the desiderata they propose."

> We thank the reviewer for their encouraging feedback, and agree that recent
developments in the OHDSI network will indeed be a useful addition. We have now
made changes in the text to recognise the initial deployment of the Gold Standard
OHDSI Phenotype library (`Background', Page 2, 9th paragraph) and the PheValuator
tool (`Automated multiple validation techniques', Page 8, 1st (full) paragraph).
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"The figures and tables are well utilized and relevant, but a missing opportunity is a
more comprehensive table that includes their 13 elements as columns and the current
available libraries/tools as rows, with checkmarks as to which elements they provide in
perspective to the 13 provided here."

> We agree that such a table would be useful, but do have some concerns about trying
to draw comparisons between different libraries and tools under our desiderata in this
manner.
For example, our desiderata focus on broad features and principles, which are often
still under development in existing systems or exist in various forms that are not easily
aligned.
We hope that our focus in this work will help advance the field to the stage where a
meaningful direct comparison, such as the one suggested, can be made between
different systems.

"One considerable concern is that the 13 desiderata feel like they are all proposed
based on the authors' works (CALIBER and PhenoFlow), serving more of a way to fit
these contributions to a broader context, than an impartial discussion about what
phenotype libraries would need based on current literature.
Some changes in the language would greatly improve this, or the paper focus should
be the phenotype library that the authors have built, versus the other approaches -
which does not seem to be the way the manuscript is currently presented."

> We agree that a significant number of our desiderata are based upon the
functionality offered by the tools and libraries developed within the authors' own
phenomics communities.
In this form, the desiderata do indeed operate as `lessons learned', representing
practices that have lead to the development of high-quality phenotype definitions and
can thus inform the wider phenomics community.
We have clarified this at various points within the manuscript, including the abstract,
introduction (Page 2, 5th paragraph) and methods (Page 3, 1st, 2nd and 3rd
paragraphs) sections.

> To ensure that we are reflecting a broader perspective, our desiderata are further
informed by our review of the functionality offered by tools outside of the authors'
phenomics communities, such as those developed within the OHDSI network.
Thus, we would prefer to retain the concept of desiderata to allow ourselves the
flexibility to also make reference to these externally developed tools, but the
aforementioned additions to the manuscript make clear that the authors' own work
contributes significantly towards the practices put forward.
The use of the term also gives us the flexibility to discuss our vision for future
directions, albeit still grounded in concrete experiences.

"Other than this concern, this work is highly relevant and very useful for the
communities involved in building phenotyping libraries."

> We thank the reviewer for all their positive remarks.

* Review 2

"High-quality phenotype definitions are desirable for clinical research.
A phenotype library of portable, reproducible and validated phenotyping definitions will
be valuable for the research community.
The authors examined the work phenotyping models, implementation and validation,
and summarized several desiderata for best practices in this review.
Some points mentioned in the paper were similar to the previous report cited
(https://academic.oup.com/jamia/article/22/6/1220/2357938)."

> We thank the reviewer for their in-depth summary of the work.

"My primary concern regarding this piece of work is the phenotyping scope.
The discussion and thoughts fit well for most rule-based phenotype definitions.
However, more and more phenotyping research moves forward to either machine-
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learning-based or high-throughput approaches (e.g., PheMAP and PheNorm).
Therefore, it is necessary to add discussions on these approaches.
In addition, NLP algorithms could be vastly complicated.
Therefore, it is essential to add more discussions regarding the complexity beyond
NLP languages and packages."

> We agree that an increased focus on machine-learning-based and natural language
processing-based/high-throughput approaches is required.
We have added additional recognition for these approaches, alongside traditional rule-
based approaches, at various points in the article, including our introduction to
phenotyping (Page 2, 1st paragraph), our closing discussion (Page 10, 3rd (full)
paragraph) and within the desiderata themselves (Page 5, 2nd, 3rd and 4th
paragraphs).

> In the latter case, we have developed an additional desideratum within the `models'
section -- `Support Natural Language Processing-based and Machine Learning-based
definitions' -- which significantly expands upon our comments about the importance of
abstract models in representing a wider range of definition types, including ML and
NLP approaches.
Specifically, we have expanded our discussion of NLP-based phenotypes, discussing
complex processes such as those associated with the derivation of the PheMap
knowledge base.
In addition, we have expanded our discussion on machine learning-based approaches,
to provide more details on the processes for deriving probabilistic phenotypes, such as
the operation of the PheNorm algorithm.

* Editor

"- reviewer 1 points out that ` the 13 desiderata feel like they are all proposed based on
the authors' works (CALIBER and PhenoFlow)'. For a narrative review article such as
this, it is not a problem if it presents `lessons learned' based on the authors' own work,
but I agree with the reviewer that this should be reflected in the language of the article.
- reviewer 2 feels a section on machine-learning-based and high-throughput
approaches is needed."

> We hope that, in our response to the individual reviewers, we have been able to
address these concerns.

"In addition, I recommend to improve the title of the article, to make it clear it's about
phenotype libraries in a clinical context. GigaScience is a multidisciplinary journal and I
think it would be wise to make it clear in the title that this review is about phenotypes in
the context of health records."

> We have altered the title accordingly.

Best regards,

Martin Chapman
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Abstract

BackgroundHigh-quality phenotype definitions are desirable to enable the extraction of patient cohorts from large electronichealth record (EHR) repositories, and are characterised by properties such as portability, reproducibility and validity. Phenotypelibraries, where definitions are stored, have the potential to contribute significantly to the quality of the definitions they host. Inthis work, we present a set of desiderata for the design of a next-generation phenotype library that is able to ensure the quality ofhosted definitions by combining the functionality currently offered by disparate tooling.Methods A group of researchersexamined work to date on phenotype models, implementation and validation, as well as contemporary phenotype libraries
::::::::
developed

::
as

:
a
:::
part

::
of
::::
their

::::
own

:::::::::
phenomics

:::::::::::
communities. Existing phenotype frameworks were also examined. This work wastranslated and refined by all the authors into a set of best practices. ResultsWe present 13

::
14 library desiderata that promotehigh-quality phenotype definitions, in the areas of modelling, logging, validation and sharing and warehousing. ConclusionsThere are a number of choices to be made when constructing phenotype libraries. Our considerations distil the best practices inthe field and include pointers towards their further development to support portable, reproducible, and clinically valid phenotypedesign. The provision of high-quality phenotype definitions enables EHR data to be more effectively used in medical domains.
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Key Points

• Portable, reproducible and clinically valid phenotype definitions have the potential to unlock health data repositories for wider andmore effective use.• To ensure definitions are of high quality, associated tools should be supported directly through the libraries where phenotypedefinitions are hosted.• 13
:
14

:
desiderata are presented to guide the development of future phenotype libraries, and to ensure phenotype definitions are of asufficient quality to enable the effective use of medical data in research and in healthcare provision.

Introduction

As a result of digitisation of health systems world-wide, elec-tronic health record (EHR) data repositories have emerged asthe main source of data for medical cohort research studies. Toextract these cohorts, there is an increasing reliance on EHR-based phenotype definitions (also referred to as phenotyping al-gorithms), which identify individuals that exhibit certain pheno-typic traits, such as the same diseases, characteristics, or set of co-morbidities. These definitions can be represented in many forms,including narrative descriptions, pseudo-code, or, in some cases,may already be directly executable.
::::::::::
Conceptually,

::::
they

:::
may

::::
vary

::::
from

:::::
simple

:::
code

::::
lists,

::
via

:::::::::
rule-based

::::::::
algorithms

::
to

::::
more

::::::
involved

::::::
machine

:::::::
learning

::::
(ML)

:::::
tasks

:::
and

:::::::::::::
high-throughput

:::::::::
approaches

::::
using

::::::
natural

:::::::
language

::::::::
processing

:::::
(NLP).

While traditional big data techniques can successfully address thescale of the EHR data available, the effectiveness of phenotype def-initions is impacted by a range of other syntactic and semanticissues, including variations in the way data is structured and thecoding systems used.
To overcome these issue and enable effective cohort extraction, aphenotype definition must exhibit certain properties. It must be
reproducible allowing for accurate (re)implementation, irrespec-tive of the idiosyncrasies of the dataset against which the defini-tion was originally developed; portable, allowing for straightfor-ward implementation, irrespective of the structure of the targetdataset; and valid, effectively capturing the disease or conditionmodelled. A definition that exhibits all of these properties we referto as high-quality

::::
high

:::::
quality.

To ensure high-quality phenotype definitions, support should beprovided to the authoring, implementation, validation and dissem-ination processes of a phenotype’s lifecycle. While such supportis currently available, it is often sporadic and inconsistent as it isdelivered via a wide range of different tools. Instead, building onthe work of Richesson et. al [1], we propose that the functional-ity provided by these tools should instead be provided centrally,through the phenotype libraries where definitions are hosted. Forexample, libraries should enable phenotypes to be developed ac-cording to some set of standard models, and track the evolution ofdefinitions under these models, so as to ensure hosted definitionsare clearer to understand and thus have the potential to be morereproducible. Moreover, libraries should assist in the derivationof directly computable phenotype definitions, through the provi-sion of implementation tooling, to improve portability by enablingthe execution of phenotypes in local use cases. Similarly, librariesshould directly validate the definitions they host, through, for ex-ample, automated comparisons with gold standards.
To this end, in this work we contribute a number of desideratafor the development of phenotype libraries, which not only en-sure that definitions are accessible, but also maximise the qual-ity of the phenotypes they contain by supporting all parts ofthe definition lifecycle.

::::
These

::::::::
desiderata

:::
are

:::::
based

::
on

::::
both

:::
the

:::::
lessons

::::::
learned

:::::
during

:::
the

:::::::::
development

::
of
:::::::::::
contemporary

::::::
libraries

:::::
within

:::
the

:::::::
authors’

:::
own

:::::::::
phenomics

:::::::::::
communities,

::
as

:::
well

:::
as

:
a

:::::
review

::
of

::
the

::::::::::
functionality

:::::::
currently

:::::
offered

::
by

::::::::
phenotype

::::::
tooling,

::::
which

::::::::
represent

:::::::
practices

::::
that

::::
have

:::
lead

::
to

:::
the

::::::::::
development

::
of

:::::::::
high-quality

::::::::
phenotype

:::::::::
definitions. By providing access to high-quality definitions, phenotype libraries enable both efficient andaccurate use of EHR data for activities such as medical research,decision support and clinical trial recruitment.

Background

Human phenomics is the study of human phenotypes, and includesthe science and practice of defining observable medical phenom-ena that indicate phenotypes to advance research and personalisedcare. The concept of a phenotype originated as a complement tothe genotype, and a phenome was defined as a complete set ofan individual’s inheritable characteristics. Rather than describingsomeone’s genetic information, a phenome captures all the observ-able properties (phenotypes) that result from the interaction oftheir genetic make-up and environmental factors, including theirdemographic information, such as height or eye color, and medicalhistories.
With the emergence of large-scale EHR data repositories, the termphenotype has evolved to denote traits shared by groups of patients,such as a disease or condition that a cohort, or set of individuals,has. This may also include other complex combinations of traits,exposures, or outcomes, including comorbidities, polypharmacy,and demographic data. Defining these phenotypes, and validatingthem to ensure their accuracy and generalisability, is the processknown as phenotyping, with EHR-based phenotyping relying pri-marily on data in the EHR. Computational phenotyping (also knownas deep phenotyping) uses either supervised machine learning tech-niques to discover new members of a priorly defined cohort, orunsupervised techniques to discover entirely new phenotypes andinvestigate their properties.
EHR data repositories bring with them a very specific set of datachallenges in terms of managing syntactic and semantic complexity,which act as a barrier to studies that need to utilise patient informa-tion from across multiple data sources and for the needs of differentstudies. For example, by the nature of healthcare delivery and howEHRs are used to document, a patient who has been diagnosed withdiabetes mellitus may be represented slightly differently in twoEHR systems, and will almost certainly be represented differentlyin EHRs for different countries.
Phenotype libraries – where definitions can be uploaded, stored,indexed, retrieved, and downloaded by users – provide a logicalplace in which to ensure that definitions are of a suitable qual-ity to overcome many of the issues associated with extracting co-horts from complex EHR datasets. This is accentuated by the factthat the development of phenotype libraries is a rapidly growingarea, with several currently under, or planned for, development.Examples include the VAPheLib – which aims to collect, store andmake available 1000 curated phenotype definitions for the clinicaloperations research community by the end of 2021 – and the .
::
Of

:::::::
particular

::::
note

:
is
:::

the
:

Observational Health Data Sciences and
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Informatics (OHDSI) Gold Standard Phenotype Library, whichaims to support OHDSI community members in finding, evalu-ating and utilising cohort definitions that are validated by the re-search community.
:::

An
:::::

initial
::::::
version

::
of

:::
the

:::::
library

::
is

:::::::
currently

:::::::
available,

:::::::
alongside

:
a
:::::
wider

::
set

::
of

::::::::::
requirements

::
to

::::
guide

::
its

:::::
future

:::::::::
development [3].

::::
Other

::::::
libraries

::::::
planned

:::
for

:::::::::
development

::::::
include

::
the

::::::::
VAPheLib [4]

:
,
:::::
which

::::
aims

:
to
::::::

collect,
::::
store

:::
and

::::
make

:::::::
available

:::
1000

:::::::
curated

::::::::
phenotype

:::::::::
definitions

:::
for

:::
the

::::::
clinical

::::::::
operations

::::::
research

:::::::::
community

::
by

:::
the

:::
end

::
of

::::
2021.

:
Phenotype libraries arealso being developed as a part of wider phenotype frameworks.Alongside Richesson’s reusable phenotype definition frameworksit initiatives such as the phenotyping pipeline (PheP), which aimsto extract, structure and normalise phenotypes from EHR data col-lected across participating sites [5].

Methods

To determine the functionality that should be provided by anext-generation phenotype library, a team of international re-searchers from leading phenomics communities – comprisingHealth Data Research UK (HDR UK) Phenomics theme membersand US researchers from the Mobilizing Computable Biomed-ical Knowledge (MCBK) and Phenotype Execution and Mod-elling Architecture (PhEMA) communities –
:::

first examined arange of tools supporting different parts of the definition life-cycle, including
::::

which
::::

were
::::::::

developed
::::::

within
::::
their

::::::::
respective

::::::::
phenomics

::::::::::
communities.

::::
This

::::
was

::::::
enriched

::::
with

:
a
:::::

wider
:::::
review

:
of
::::

the
:::::::
literature

:::
via

::::
Web

::
of
:::::::

Science
:::::
(WoS)

:
[6]

:::
and

:::
the

::::
grey

:::::::
literature

:::
via

:::::
Google

::
to
:::::::

identify
:::::::::
third-party

::::::
projects

::::
that

::::
have

:::::::
developed

:::::::::
phenotype

::::::
tooling,

::
or

:::
are

:::::::
planning

:::
its

::::::::::
development,

:::
and

:::::
future

:::::
trends.

:::
Our

:::::::
decision

::
to

:::::
include

:::
the

::::
grey

:::::::
literature

:::
was

:::::::
informed

::
by

:::
our

:
a
:::::

priori
:::::::

knowledge
::

of
::::

tools
:::::

under
::::::::::
development

:::
that

::::
have

::::
not

:::
yet

::::::::
published

:::::::::
peer-review

:::::::
articles.

:::::
The

::::
tools

:::::::
reviewed

::::::
included

:::::
those

:::
that

::::::
support

:
authoring (e.g., modellingusing the Quality Data Model (QDM) logic [7], the Clinical Qual-ity Language (CQL) [8], and use of the Observational MedicalOutcomes Partnership (OMOP) Common Data Model (CDM) [9]

:::
and

::::::::
associated

::::::
tooling

::::
such

::
as

:::::::
OHDSI’s

::::::::
Automated

:::::::::
PHenotype

::::::
Routine

::
for

::::::::::
Observational

:::::::::
Definition,

::::::::::
Identification,

:::::::
Training

:::
and

::::::::
Evaluation

::::::::::
(APHRODITE)

:
[17]), implementation (e.g., definitiontranslators [11]) and validation (e.g., electronic phenotyping val-idation [12])tools.

::::::::
Common

::::::::::
functionality

:::::::
provided

::
by

:::
the

::::
tools

:::::::
identified

:
–
::::::::::

representing
::::::::::
opportunities

:::
for

:::
new

::::::::
phenotype

:::::
library

:::::::::
functionality

::
–

:::
was

:::::::
extracted

:::
and

::::::::::
summarised.

A purposive sample of existing library initiatives
::
In

:::::::
addition,

::
the

:::::::
authors

:::::::
examined

:::::::
existing

::::::
libraries

:::::
from

:::::
within

::::
their

::::
own

::::::::::
communities – including the Phenotype Knowledge Base (PheKB)[13], CALIBER [14], Phenoflow [15] ,

::
and

:
the Concept Library[16] and OHDSI’s Automated PHenotype Routine for ObservationalDefinition, Identification, Training and Evaluation (APHRODITE)computable phenotype architecture – were also examined todetermine existing functionality and future trends. This wasenriched with a review of the literature via Web of Science(WoS) and the grey literature via Google to identify projectsthat have developed or planned development of a phenotypelibrary. Our decision to include the grey literature was informedby our a prioriknowledge of systems under development thathave not yet published peer-review articles.
::
to

::::::
identify

:::::::
instances

:
of
::::::::::

functionality
::::::::

currently
:::::::::
supporting

:::
the

::::::::
phenotype

::::::::
definition

::::::
lifecycle.

:
Common functionality provided by both the tooling andexisting libraries were

::::
these

:::::::
libraries

:
–
:::::

which
:::
has

::::
been

:::::
shown

::
to

::::
result

::
in

::::::::::
reproducible,

:::::::
portable

:::
and

::::
valid

::::::::
phenotype

:::::::::
definitions,

:::
and

:::
thus

::::::::
represent

:::
best

:::::::
practice

:
–
::::

was
:::
also

:
extracted and sum-marised. These

:::
Both

::
of

::::
these

:::::::::
summaries were translated to a draft set of desideratavia discussion amongst a subset of the authors [MC, SM, EJ, SD, VC].

All authors participated in an asynchronous iterative review processto critique, consolidate, refine, and define the final set of desiderata.The desiderata were further classified into logical categories.

Desiderata

In total, the authors arrived at
:
a
:
finalised collection of 13

:
14

:
desider-ata, which are organised across the following sections into fivecategories: modelling, logging, implementation, validation andsharing and warehousing. Figure 1 shows how the desiderata pre-sented promote the design of a phenotype library that supports allparts of the phenotype definition lifecycle.

Modelling

Phenotype models govern the structure and syntax of phenotypedefinitions. For example, phenotype definitions are commonly
:::::::::
traditionally rule-based, meaning that they are comprised of in-dividual logical statements that each evaluate to a boolean value,typically by relating data elements (with associated values) – suchas the presence of a particular set of ICD-10 codes or a particular labresult – to each other. The set of operators available to an authorwhen connecting data elements (e.g. logical connectives such asconjunction and disjunction) would be established within a phe-notype definition model. A model may dictate that a phenotype berepresented in an unstructured, semi-structured, structured, orexecutable manner [18]. A summary of different phenotype defi-nition formats, governed by phenotype models, is given in Table1.
Implementing a phenotype definition involves translating the ab-stract definition (if unstructured or semi-structured) into an ex-ecutable form that can be directly run against a patient dataset inorder to derive the cohort exhibiting the defined phenotype. Typ-ically this requires the logic of the definition to be realised in aprogramming language, such as translating abstract conditionalclauses into a set of tangible Python conditional statements. Werefer to these implementations as computable phenotypes. For adefinition to be reproducible, it must be realised in a formal struc-ture that can be accurately interpreted and implemented. Given thepotential for human error in translating from an unstructured nar-rative to something computable, formal phenotype models providesuch a structure.
Phenotype models are also key in ensuring semantic interoperabil-ity between definitions. That is, while the development of phe-notype definitions can involve deriving a curated, canonical setof phenotype definitions containing ‘definitive’ versions for eachdisease of condition being modelled for a particular domain (e.g.a national stroke body may want to maintain their set of strokephenotyping algorithms), more often than not, it is perfectly validto have overlapping phenotype definitions for different uses. Forexample, an eligibility criteria for a clinical trial may differ from arule that triggers a decision support tool in an EHR system, and bothwould differ from a definition used in a population health study,even if all three nominally refer to same disease [19]. Internation-ally, definitions for the same disease may also differ [20]. Whilethis overlap is permissible, different definitions for the same condi-tion must still be compatible, enabling, for example, their relativefunctionality to be compared. The adoption of a phenotype modelenables such compatibility.
Given these benefits, a phenotype library should adopt a formalphenotype model to control the structure of hosted definitions. Toensure the use of such a model, a library can offer a graphical au-thoring environment – in the same way that tools such as the Phe-notype Execution and Modelling architecture (PhEMA) AuthoringTool (PhAT) do [7] – through which new definitions can be au-
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Figure 1. The stages of the phenotype definition lifecycle supported by a next-generation phenotype library.
Table 1. Phenotype definition formats

Format Description Example CategoryCode list A set of codes that must exist in a patient’s healthrecord in order to include them within a phenotypecohort
COVID-19 ICD-10 code U07.1 Rule-based

Simple data elements Formalising the relationship between code-based
data elements using logical connectives

COVID-19 ICD-10 code U07.1 AND ICD-11code RA01.0
Rule-based

Complex data elements Formalising the relationship between complex dataelements, such as those derived via NLP. Patient’s blood pressure reading > 140 ORpatient notes contain ‘high BP’ Rule-based
Temporal Prefix rules with temporal qualifiers Albumin levels increased by 25% over 6hours, high blood pressure reading has tooccur during hospitalisation.

Rule-based

Trained classifier Use rule-based definitions as the basis for construct-ing a classifier for future (or additional) cohorts A k-fold cross validated classifier capable ofidentifying COVID-19 patients Probabilistic

thored. Similarly, existing definitions can be automatically checkedfor their adherence to the chosen model when uploaded.
Desiderata relating to the adoption of a phenotype model by a libraryare listed in the following sections. We view these desiderata ascomplementary to the well-established desiderata for phenotypedefinition model development put forward by Mo et al. [21].
Support modelling languagesThe phenotype definition model adopted by a library should be sup-ported by a (non-executable) high-level modelling language thatdictates the syntax available to an author when defining the logicof a phenotype. A computable form of the definition can then be re-alised for execution in a local use case. When selecting or developinga definition model, the temptation may be to select a lower-level,executable programming language, in an attempt to expedite localimplementation. For example, one could argue that a language suchas Python is sufficient for simultaneously defining phenotypes andrealising them computationally. However, we would argue thatusing such a language as a means to express the logic of a defi-nition ties the definition to general purpose, low-level languageconstructs, reducing clarity, and thus reproducibility. This conclu-sion is supported by work such as [22], which found openEHR anoverly restrictive standard when attempting to express phenotypedefinitions in a form that can be directly executed. An example of aphenotype definition realised in an executable language (Python)is given in Figure 2.
In contrast, the syntax of higher level

:::::::::
higher-level

:
modelling lan-guages, while still precise, is often clearer, as well as often beingdomain specific. For example PhEMA’s PhAT allows users to de-fine phentoypes

::::::::
phenotypes using the high-level, domain-specific

1 va lu e s e t={}
2 va lu e s e t [ ‘ ‘ Acute Pharyng i t i s ” ] = ‘ ‘ 2 . 1 6 . 8 4 0 . . . 1 0 1 1 ”
3 va lu e s e t [ ‘ ‘ Acute T o n s i l i t i s ” ] = ‘ ‘ 2 . 1 6 . 8 4 0 . . . 1 0 1 2 ”
4
5 def Pharyng i t i s ( ) :
6 condit ionA = va lu e s e t [ ‘ ‘ Acute Pharyng i t i s ” ]
7 condit ionB = va lu e s e t [ ‘ ‘ Acute T o n s i l i t i s ” ]
8 return condit ionA + ‘ ‘ ” + condit ionB ;

1 va lu e s e t ‘ ‘ Acute Pharyng i t i s ” : ‘ ‘ 2 . 1 6 . 8 4 0 . . . 1 0 1 1 ”
2 va lu e s e t ‘ ‘ Acute T o n s i l i t i s : ‘ ‘ 2 . 1 6 . 8 4 0 . . . 1 0 1 2 ”
3
4 de f i n e Pharyng i t i s :
5 [ Condit ion : ‘ ‘ Acute Pharyng i t i s ” ] union

[ Condit ion : ‘ ‘ Acute T o n s i l i t i s ” ]

Figure 2. Python (executable) vs. CQL (modelling) [23] representation of Pharyngitis
phenotype.

syntax associated with the Quality Data Model’s (QDM) logic ex-pressions (now capable of working instead with the Clinical QualityLanguage (CQL) [8]). Both QDM and CQL make particular provisionfor the representation of temporal information, such as the (sequen-tial) relationship between events,
:

or between events and definedmeasurement periods. A further example of a modelling languageis OHDSI’s cohort definition syntax, which although tied directly tothe OMOP CDM, is also high-level and domain specific, allowing forsignificant clarity when interpreting existing definitions [9]. LikeQDM/CQL, this syntax also makes provision for temporal elements(e.g. associating patient observations to an elapsed time period),but looks more holistically at the cohort relating to the phenotypebeing defined, through, for example, the use of defined
::::::

specifiedinclusion and exclusion criteria. As a final example, Phenoflow’s
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workflow-based model relies on a categorised set of steps to expressphenotype definitions, with the same benefits [15]. An example ofa phenotype realised in a higher level modelling language (CQL) isalso given in Figure 2 for comparison.
In encouraging phenotype definition models to be built aroundmodelling languages, there is also the potential to supportthe definition

:
It
::

is
::::

also
::::::::

important
:::

to
::::
note

::::
that

:::
the

:::
use

::
of
::

a
:::::::
modelling

:::::::
language

::
as
:::

the
::::
basis

:::
for

:
a
::::::::
phenotype

:::::
model

::::
does

:::
not

::::::
preclude

:::
the

::::
utility

::
or

:::
use

::
of

:::::::::
higher-level,

::::::
(more)

::::::::::::
human-readable

:::::::::::
representations

::::
such

::
as

:::::::::
flowcharts.

::
In

::::
fact,

:::::::
modelling

::::::::
languages

::::::
typically

:::::::
connect

:::
well

::::
with

::::
such

::::::::::::
representations.

::::
For

:::::::
example,

::::::::
flowcharts

:::
can

::
be

::::::
directly

:::::::
generated

::::
from

::::::::::
Phenoflow’s

:::::::
workflow

:::::
model,

:::::
QDM

::
is

:::::
linked

::
to

::
a
:::::::
graphical

::::::
HTML

::::
layer

:::
and

::::::
OHDSI

:::::
cohorts

:::
can

:::
be

:::::
viewed

:::::::::
graphically

::::
using

:::
the

:::::
ATLAS

::::
cohort

:::::
editor.

:::::
Support

::::::::
Natural

::::::::
Language

::::::::::::::
Processing-based

::::
and

::::::::
Machine

:::::::::::
Learning-based

::::::::
definitions

:::
The

:::::::
modelling

:::::::
language

:::::::
selected

:
to
::::

form
:::
the

::::
basis

::
of

:
a
::::::::
phenotype

:::::::
definition

:::::
model

:::::
should

:::
also

::::::
support

:::
the

:::::::::::
representation of a widerrange of definition types (Table 1). That is, at a higher level oneis

::::
under

::
a

:::::::
definition

::::::
model,

:::
one

::::::
should

::
be

:
able to express notonly standard rule-based definitions, but also

::::
more

::::::
complex def-initions based on

::::::
Machine

:::::::
Learning

::::
(ML)

:::
and

:
Natural LanguageProcessing (NLP) and Machine Learning (ML) techniques. Thesetechniques are increasingly being used to either derive, or form apart of, phenotype definitions,

:::::::
becoming

:::::::::
increasingly

::::::::
prevalent,particularly in those situations where the datasets against whichthe implemented definition is to be executed against are of vary-ing completeness . For example, through a modelling language,an author should be able to formally express the synonyms of agiven medical term, with a view to these being used as the basis forprocessing free-text from a medical record in a computable form inthe absence of consistent record coding. Expressing the use of NLPin an executable language would likely require

::
or

:::
lack

::::::::
consistent

:::::
record

:::::
coding.

::::
The

::
use

::
of
::::::::
modelling

::::::::
languages

:
to
::::::::

represent
::::
these

::::
types

::
of

::::::::
definitions

:
is
:::
also

::::::::
important

::
for

::::::::::::
reproducibility,

::
as

::
the

:::
use

:
of
::
an

::::::
abstract

:::::::::::
representation

::::::
reduces

:::
the

::::::
potential

:::
for references toimplemented libraries, which would reduce portability. Similarly,in the case of ML

::::::::
commonly

::::
used

::
by

:::
NLP

:::
and

:::
ML

:::::::::
techniques.

:::::::
Critically,

:::
in

:::::
order

:::
to

:::::::::
sufficiently

::::::::
represent

:::::
both

:::
ML

::::
and

::::::::
NLP-based

:::::::::
phenotypes, a modelling language should supportthe

::::
must

::
be

::::
able

::
to

::::::::
represent

:::
not

::::
only

:::::
static

:::::::::
information

:::
(as

:
in
:::::::::

rule-based
::::::::::

phenotypes)
::::

but
:::
also

:::::::
complex

:::::::::
processes.

::::
For

:::::::
example,

::
in

:::
the

:::
case

::
of

::::
ML,

:
a
::::::::
definition

:::
may

::::::
consist

::
of

:
a
:::::

static,high-level specification of a trained patient classifier (via theprovision of values such as feature coefficients), or a
:::

may
::
be

:
a
::::
more

:::::::
complex

:
description of the workflow used to derive aclassifier

:::
train

:
a
:::::::

classifier
:::
for

:
a
::::
given

:::::::
condition, with a view to theclassifier being re-implemented in new use cases, or traininga new model in new use cases, respectively. Once again, at alower level, this would likely result in references to implementedlibraries, reducing portability.The abstract

:
.
::::

The
:::::::
workflow

::::
used

:
to
:::::

train
:
a
:::::::
classifier

:::
may

::::::
involve

:::
the

::::::::::
identification

::
of

::::
cases

:::::
using

::
the

:::::::
presence

::
of

:::::
certain

::::::::
keywords

:::::
within

::
an

::::
EHR [24]

:
or,

::
as
::

in
:::
the

:::
case

::
of

:::
the

:::::::
PheNorm

:::::::::
framework,

::::
may

:::::
involve

::::::::
additional

:::::
steps,

:::
such

:::
as

::::::::::
normalisation

:::
(to

::::
factor

::
in
:::::::

number
::
of

::::::::
encounters

:::::
when

:::::
looking

:::
at

:::
the

:::::::::
significance

::
of

::
a
:::::
larger

::::::
number

::
of

::::::::
keywords

::
or

:::::
codes)

:::
and

:::::::
denoising

::
(to

:::
look

::
at
:::

the
:::::

wider
::::::
context

::
of

:
a
:::::::

keyword
::
or

:::
code

::::::
count,

:::
e.g.

:::::::::
competing

::::::::
diagnoses)

:
[25].

::::
The

::::::::
high-leveldefinition of machine learning-based, or probabilistic, phenotypesis something

:
in
::::

this
:::
way

:
is
:

supported in the OHDSI’s AutomatedPHenotype Routine for Observational Definition, Identification,Training and Evaluation (APHRODITE) computable phenotypearchitecture
::::::::
framework, which, although also linked to the OMOPCDM, offers a level of abstraction at which rules can be fed intothe construction of a classifier, and lower level code generated

accordingly
:::::
trained

::::::::
classifiers

::::
can

::
be

::::::::::
represented

:::
and

::::::
ported

::::::
between

:::::
sites,

::
or

:
a
::::::

defined
::::::::

workflow
:::
can

::
be

::::
used

:::
to

:::::::
construct

:::::::::
site-specific

::::::::
classifiers,

:::::
when

::::
used

::
in

:::
an

::::::::
executable

::::
form

:
[26].Similarly, languages like CQL have the potential to link to external

tooling, for the purposes of expressing NLP and ML functionality.
It is also important to note that the use of a modelling languageas the basis for a phenotype model does not preclude the utilityor use of higher-level, (more) human-readable representationssuch as flowcharts. In fact, modelling languages typically connectwell with such representations. For example, flowcharts canbe directly generated from Phenoflow’s workflow model , QDMis linked to a graphical HTML layer and OHDSI cohorts canbe viewed graphically using the ATLAS cohort editor

:
In
:::

the
::::

case
:
of
:::::

NLP,
:
a
::::::::

definition
::::

may
::::::
consist

::
of

:
a
::::::

simple
:::

list
::

of
::::::::

keywords
::::::
relating

:
to
::

a
::::
given

::::::
medical

::::::
concept,

::
or

:
a
:::

set
::
of

:::::
regular

:::::::::
expressions

:::
(not

:::
tied

:::
to

:::
any

::::::
specific

:::::::::::
programming

::::::::
language),

:::::
with

:
a
::::

view
:
to
:::::

these
::::
being

::::
used

::
as
:::

the
:::::

basis
::
for

:::::::::
identifying

::::::::
conditions

::::
from

:::::::
free-text

::
in

:
a
:::::::

medical
::::::
record,

:::::
when

::::::
realised

::
in

::
a
:::::::::
computable

::::
form.

::::::::
However,

:::
like

::::
ML,

::::::::
NLP-based

:::::::::
phenotype

::::::::
definitions

:::
are

:::
also

::::
often

::::::::
associated

::::
with

:::::::
complex

::::::::
processes,

::::::::
especially

:::::
when

:::
used

::
to
:::::::

conduct
::::::::::::
high-throughput

:::::::::
phenotyping.

::::
For

:::::::
example,

::
a

::::::
PheMap

::::::::
phenotype

:::::::
definition

:::::::
consists

:
of
::

a
::
set

::
of

:::::
linked

:::::::
concepts,

::
the

:::::::
presence

::
of
:::::

which
::

in
::

a
::::::
patient’s

::::
EHR

:::
are

::::
used

::
to

::::::::
determine

::
the

:::::::::
probability

::
of

:::::
them

:::::
having

:::
the

::::::::
condition

:::::::::
represented

:
[27].

:::
The

::::::::
association

::
of

:
a
::::::::
phenotype

::::
with

:::::::
different

:::::::
concepts

:
is
::::::
defined

:::::
within

:::
the

::::::
PheMap

::::::::
knowledge

:::::
base,

:::::
which

:
is
:::::::::

constructed
:::::

based
::
on

:
a
::::::
process

::::
that

:::
uses

::
a

::::::
specific

::
set

::
of

::::
NLP

::::
tools

::
to

:::::
derive

::::
these

:::::::::
associations

::::
based

::
on

:::
the

::::::
content

::
of

:::::
various

:::::::::
text-based

:::::::
resources.

::::::::
Therefore,

::
it

::
is

:::
also

::::::::
important

:::
to

:::::::
represent

::::
this

::::::
process

::
as
::

a
:::
part

::
of

:::
any

::::::::
definition,

::::::::
especially

:
if
:::

the
:::::::::

knowledge
:::
base

:::::
needs

::
to

::
be

::::::::::
reconstructed

::::::
within

:::::::
different

:::::::
domains.

:::
In
::::::::

instances
::::
such

::
as

:::::
these,

:
it
::::

may
::
be

::::::::
important

:::
for

:::
the

::::::::
definition

:::::
model

::::
used

::
to

:::::
include

::::::::
guidance

::
on

:::
the

::::
use

::
of

::::::
specific

:::::
tools,

:::
but

::
it
::::

must
:::

do
::
so

::
in

:
a
:::::::

manner
::::

that
::::::
retains

:::::
clarity

::::
and

::::::::::::
generalisability,

::::
thus

:::::::
balancing

:::::::::::
reproducibility

:::::::::::
requirements.

:::::::
Modelling

::::::::
languages

:::
like

:::
CQL

::::
have

::
the

:::::::
potential

::
to

:::
link

::
to

::::::
external

:::::
tooling

:
,
::
for

:::
the

:::::::
purposes

:
of
::::::::

effectively
::::::::
capturing

:::
NLP

:::
and

:::
ML

:::::::
processes

::::
such

::
as

::::
these.

Support multi-dimensional descriptionsA significant hurdle in porting a phenotype definition from onesetting (institution or dataset) to another
:
–
::

a
:::::
process

:::
we

:::
refer

::
to

::
as

::::::::
localisation

::
– is understanding its structure and semantics in orderto derive a local computable form, or modify an existing one. Com-plex rules and the use of idiomatic clinical terminology, althoughoften necessary components of a definition, are both barriers tothis understanding, and thus reproducibility. To address this issue,a phenotype definition model should allow an author to express thesame logic of a phenotype at different levels of technical complexity.This approach aims to communicate supplementary informationalongside the provision of the core definition logic. For example,the workflow-based Phenoflow model allows an author to use thetechnical terminology and rules required to express a phenotypedefinition, but then also requires an author to provide longer defi-nitions of this functionality to improve clarity, and to also classifyeach unit of functionality under a given ontology, enabling a high-level understanding of the functionality to always be accessible.In other modelling languages like CQL, such information can becommunicated using constructs such as inline comments.

Logging

The development of a phenotype definition is an incremental pro-cess. Capturing and communicating this process is key in ensuringa definition can be accurately interpreted and is thus reproducible.Morover
:::::::
Moreover, this information strengthens the trustworthi-ness of a phenotype and thus its potential applications. Therefore,



6 | GigaScience, 0000, Vol. 00, No. 0

update

update

(2)

update

update

primary
cases

(3)
secondary
cases

extract
record

condition
history

dementia 0

(1)

dementia 1

(4)

author

(5)

us
ed

use
d

used

used

was
generated

by

was generated by

was generat
ed by

wa
s g

en
era

ted
by

used

used

u
se
d

us
ed

w
as

associated
w
ith

w
as
associated

w
ith

was associated with

was associated with

Figure 3. An example data provenance trace showing an update to a dementia
phenotype, using the W3C PROV standard. The initial version of the phenotype (1)
is updated by four edit activities (2), each of which modifies a component of the
definition (e.g. record extract logic, diagnostic codes, previous history) (3), in order
to generate a new version (4), and the process is linked with the author making
these edits (5).

phenotype libraries should provide a mechanism for logging theevolution of a phenotype definition.
Support versioning and data provenanceOne way in which a phenotype can evolve is through a series ofiterative refinements. SAIL databank

:::::::
Databank’s Concept Librarystores phenotypes as sets of codes, with a view to making thesephenotypes available in different studies and use cases [16]. Theconcept library, as the name suggests, focuses on a model underwhich phenotypes are collections of grouped medical concepts or

working sets. The Concept Library records and communicates theevolution of a phenotype definition using methods akin to standardversion control, logging the state of a phenotype after each revi-sion, and thus provides an overview of the definition’s progression.This versioning process often relies on attributing a universallyunique identifier (UUID) to each definition, and each subsequentrevision of that definition. Such an identifier might simply be in-cremental, or convey some details of the phenotype itself. It shouldalso be independent of other identifiers, in order to maximise clar-ity [28]. For example, within APHRODITE a UUID is generated
:::::
derived

:
by committing (each version of) a

:::::::
generated definition to aGitHub repository and extracting the unique commit hash value,

::
in

::::::::
accordance

::::
with

::
the

::::
FAIR

::::::::
(Findable,

::::::::
Accessible,

::::::::::
Interoperable

:::
and

:::::::
Reusable)

::::::::
principles [29].

A more comprehensive way to capture the evolution of a definition –and thus contribute to its reproducibility – is to deploy formal data
provenance capture tools to capture richer, real-time informationabout the evolution of an entity. This might include informationabout updates to the structure of a definition, or details of how thatdefinition was validated. It might also include information abouthow the definition was derived if, for example, the definition is atrained model. An example of one such tool is the data provenance
template server [30], which allows for the specification of abstracttemplates, based on the W3C PROV standard [31], while eliminatingthe complexity of dealing with low-level provenance constructs.

Using provenance tools, a trace is automatically constructed thatcan be queried in order to answer a range of questions, such aswhich clinical codes were used to support a definition at a giventime. The Phenoflow library is integrated with the provenancetemplate server, enabling the evolution of the definitions it hosts tobe tracked over time [32]. A fragment of provenance constructed inthis manner is shown in Figure 3.
Support modular relationships between phenotypesAnother way in which phenotype definitions evolve is through theirreuse in constructing new definitions. For example, a phenotypemay, either in part or entirely, be defined by other self-containedphenotypes. For example, bipolar disorder is (in part) defined byboth substance and alcohol abuse, two phenotypes in their ownright [33]. In this way, existing phenotypes become the buildingblocks for new phenotypes. Much like a version history, it is thusimportant to capture and communicate this information upon im-plementation, to provide detailed insight into the formulation ofthe definition. As such, a phenotype library should log the relation-ship between different definitions and, if authoring capabilities aresupported, a library should allow new definitions to be constructedbased upon existing ones. This is similar to the approach taken bythe Concept Library, which relates concepts to each other in orderto create phenotype definitions, and by Finngen’s Risteys platform,which relates phenotypes temporally, listing those phenotypes thata patient is likely to exhibit either before or after exhibiting another(e.g. the onset of depression after exhibiting bipolar disorder) [34].Establishing this relationship further contributes to the provenanceof a phenotype, the precision of its definition, and, consequently,its reproducibility.
Conversely, sub-phenotypes may be computationally derived fromexisting phenotypes by clustering of those features (e.g. demo-graphic, diagnosis, medication, etc.) identified, by a trained clas-sifier, to be key attributes of those patients exhibiting the parentphenotype [35]. Such a relationship should also be logged by a phe-notype library, to establish the evolution of a definition, and trackchanges and dependencies across phenotype definitions.
Implementation

Our initial desiderata determined that phenotype definitions shouldnot themselves be executable. While important for reproducibil-ity, this raises natural issues around the complexity of realising aphenotype defined using a modelling language computationally forindividual use cases, something that negatively impacts portabil-ity. This issue can be addressed by meeting several requirements,which are explored in the following sections.
Communicate implementation information in the modelOne way in which implementation can be supported is throughthe definition itself, by communicating information pertinent toits computable realisation. To do this, one might select a pheno-type definition model based on a modelling language that allowsan author to express additional information at different levels of
abstraction. For example, the Phenoflow model frames the tradi-tional (rule-based) logic of a phenotype definition as an abstractlayer, and allows an author to complement this layer with additionallayers, each of which gradually communicates more implementa-tion information: a functional layer, introducing the concept of datatypes, and a computational layer, expressing details such as targetexecution environments. The fact that these layers sit alongsidethe traditional, abstract logic layer, allows for more concrete imple-mentation to be expressed without impacting portability.
The abstract layer of the Phenoflow model is split into individualmodules, each of which represents a distinct unit of functionality,and which collectively define the process required for deriving a pa-
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tient cohort from a set of health records. Each module in the abstractlayer has an equivalent module in both the functional and compu-tational layers, ensuring a correspondence between each level ofrepresentation within the model. However, these modules also pro-vide another means by which implementation information can becommunicated through a definition model, in that they provide aclear template for development; each module represents a singleunit of functionality that must be implemented by a developer whenrealising the computable form. This reduces the implementationburden on developers, and thus improves portability. Modellinglanguages like CQL, which support the definition of individual func-tions as a part of an abstract layer, offer similar benefits.
Support tooling that provides multiple programming language imple-
mentationsPhenotype implementation tooling automatically takes an abstractphenotype definition and translates it into a computable form. Thisnaturally improves portability. Examples of this tooling includethe translators developed by the PhEMA initiative, which are ableto take a modelling language definition of a phenotype – suchas definitions expressed in QDM, as produced by the PhAT, or inCQL – and transform them into executable formats (e.g pipelines[11]).

::
In

:::::::
addition,

:::
the

:::::
OHDSI

:::::
tools

::::::
provide

::::
ways

::
to

::::
take

::::
their

::::::
domain

:::::
specific

:::::::::::
representation

:::
and

:::::::
translate

:
it
::
to

:::
SQL

::::::
queries

:::
that

::::::
execute

:::::
against

:::::::
multiple

:::::::
database

:::::::
systems

:::::::
adopting

:::
the

:::::
OMOP

::::
CDM.

:::::::
Although

::
all

:::::::::
definitions

::
are

::::
SQL,

:::
the

::::::
different

::::::
dialects

::::
used

::
by

::::::
database

::::::
vendors

:::
are

::::
akin

:
to
:::::::

separate
::::::::::
programming

::::::::
languages.

Given these benefits, a phenotype library should provide accessto implementation tooling. In the simplest form, access shouldbe provided to this tooling by hosting and indexing it in a library,in the same way that the definitions themselves are hosted andindexed. This tooling can then be downloaded, along with a defini-tion, and executed locally in order to produce a computable form.More advanced integrations will provide the functionality offeredby implementation tooling directly through the library, by runningit as a service that can be accessed by users via the library in order todownload the automatically generated computable form of a pheno-type. This is the approach taken by the Phenoflow platform, whichallows users to obtain computable copies of a phenotype definitiondirectly, by running a microservice generation architecture.

The tooling indexed should be able to support implementationsin a variety of different programming languages. While the pro-gramming language used might seem to be of little consequence,in practice, even with this presence of a translator, the researchergenerating a computable form for a new use case is likely to stillhave to modify
:::::::
(localise) that computable phenotype for local use.Such modifications might include optimisations to the structureof the implementation to allow the computable form to operate inlow-memory environments or to operate as a part of existing infras-tructure (e.g. a clinical trial platform [36]). In this instance, havingthat definition in a language that the researcher is comfortable withediting is important. For example, the pipeline-based implemen-tation

:::::::
originally produced by the PheMA translator only supportsthe KNIME format. As such, a researcher has to be comfortablewith this format in order to make edits. To maximise portability,phenotype libraries should aim to support implementation toolingcapable of producing executable definitions in multiple languages.An example of this is seen within the Phenoflow platform, whereone can generate a workflow that utilises modules from a varietyof languages, including Python and Javascript, with containerisedenvironments supporting the straightforward execution of theseunits locally.

Support tooling that provides connectivity with multiple data stan-
dardsWhen a phenotype definition is translated by a piece of tooling intoan executable form, it is typical for that definition to be tied to agiven data source format, from which the resulting cohort is identi-fied. In certain cases, that data format is always the same. For exam-ple, OMOP cohort definitions, when translated into a computableform (SQL), are always tailored for the OMOP CDM. While beneficialin the sense that this provides an automated translation processthat works across sites, those sites must all adopt the OMOP CDM,which is not always the case

::::::
feasible. Instead, in reality, sites mayuse a variety of implementation formats, such as i2b2 and FHIR. Forthese reasons, phenotype libraries should index implementationtooling that not only supports multiple language implementations,but also supports the realisation of definitions for different data for-mats. Naturally, the more data source formats supported, the moreportable the definition

::::::::
definitions stored within a library is

::
are. Forexample, the computable forms generated by PhEMA’s translatorscan be tailored for a variety of local data formats, including FHIRand the OMOP CDM itself. Similarly, in the Phenoflow library, in-teracting with a data source is considered to be the first step in aphenotype’s definition, and as such different connectors are avail-able when generating the computable form of a definition. Theseconnectors support a variety of different standards such as OMOPand i2b2, and plans are in place to support dataset specific stan-dards, such as the standard used by UK Biobank (via tooling suchas Funpack [37]).

The connector approach also provides a natural point at which toconduct any necessary (automatic) translation between the codingsystem adopted by a target data source, and the coding systemexpected by the implemented definition. For example, if the targetdatasource adopts Read codes, but the computable phenotype relieson sets of ICD codes, a connector might not only ingest data, butalso perform code mappings accordingly.
Despite these benefits, the requirement to produce a new translator,or new connector, for each new data source format, is a naturaldrawback to each of these approaches. However, the advantagesover manual translation are still clear.
Validation

Validating a phenotype definition involves confirming its accuracy.To do this, the cohort identified by a computable phenotype is typi-cally compared to a reference standard, such as the cohort identifiedby manual chart review from the same patient population (a gold
standard). The extent to which the two cohorts overlap determinesthe validity of the definition. While reference standards are a com-mon means of phenotype validation, other techniques exist, and arelisted in Table 2. Phenotype definitions that are shown to be accu-rate are considered to be of a higher quality. Therefore, phenotypelibraries should facilitate the validation process.
Support a defined validation processTo support the validation of stored definitions, a phenotype libraryshould have a clear and scalable process for the submission of exist-ing validation information by a user, across a variety of the mech-anisms shown in Table 2. This information can then be storedand presented alongside each definition. For example, the CAL-IBER library stores phenotypes as code sets (342, at the time ofwriting), with a view to providing a framework for the definitionof consistent phenotypes, which can then be reused by care ser-vice providers for nation-wide EHR-based observational research[14]. Each definition in CALIBER appears alongside algorithmicinformation about the relationship between the code sets and keyvalidation information. Specifically, the CALIBER library offers upto 6 different techniques, which are used to validate a single def-
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Table 2. Phenotype validation mechanisms
Mechanism Description ExampleDisease registries Compare the phenotype cohort with those present in theregistry. Comparison of a diabetes phenotype cohort withthose patients present in a diabetes registry (e.g. T1Dexchange).Chart review Compare the phenotype cohort with the patients identifiedby manual chart review. Comparison with a diabetes gold standard, producedby double manual chart review of patients.Cross-EHR concordance Compare percentage of cases identified by a phenotype acrossdifferent sources, and identify any overlap. Comparison of the percentage of patients identifiedby a diabetes phenotype in primary and secondarycare EHRs, and the identification of any case overlap.Risk factors Compare the magnitude of the phenotype cohort with stan-dard risk calculations. Comparison with the output of a Cox hazards model.
Prognosis Compare the magnitude of the phenotype cohort with exter-nal prognosis models. Comparison with a survival analysis.
Genetic associations Compare whether the presence of a patient in a phenotypecohort is consistent with their genetic profile. A patient is more likely to be a valid member of adiabetes cohort if they have the HLA-DR3 gene.

inition. Similarly, the proposed OHDSI gold standard phenotypelibrary is so-called because there are plans to implement
:
is a well-defined process

::::::
proposed

:
for the submission of phenotypes basedon different user roles. Specifically, the submission of a computablephenotype definition to the library will

:::::
(which

:::
can occur using theAPHRODITE architecture and

:::::::::
framework) will require definitionsto be submitted by those in the author role, vetted by librarians,validated by users who act as validators and used by standard users[38].

Automate multiple validation techniquesWhen new definitions are submitted without validation informa-tion to a library, it should seek to automatically validate thesedefinitions by comparing them, or their outputs, against assetsthat are hosted alongside the definitions, such as gold standarddatasets. For example, in [12], the authors present electronic phe-
notyping validation, a framework for the automated comparisonof a definition with manual chart review results.

:
In

:::
the

::::::
absence

:
of
::::

such
::::::

assets,
::

a
:::::
portal

:::::
might

::::
host

:::::
tooling

::::::::
designed

::
to

:::::
derive

::::
these

::::
assets

:::::::::::
automatically.

:::
For

::::::
example,

:::::::::
PheValuator

:::::
trains

:
a
::::
linear

::::
model

:::::
based

::::
upon

::::
cases

:::
and

:::::::
controls

:::::::
identified

::::
using

:::::
some

:
of
:::
the

::::::::
techniques

::::::
already

::::::::
discussed,

::::
such

::
as

:::
the

:::::::
presence

::
(or

:::::::
absence)

:
of
::

a
::::
large

::::::
number

::
of

:::::
clinical

:::::
codes

::::::
relating

::
to

:
a
::::::
certain

:::::::
condition

:::::
within

:
a
:::::::

patient’s
:::::

record
:

[39].
:::::

This
:::::
model

::
is

::::
used,

:::
in

::::
turn,

::
to

:::::::
construct

::
an

::::::::
evaluation

:::::
cohort,

:::::
which

:::::::
matches

:::
each

::::::::
individual

::
in

::
the

:::::
cohort

::
to
:
a
:::::::::

probability
::::
value

::::::::
indicating

::
the

::::::::
likelihood

::
of

::::
them

:::::
having

:::
the

:::::::
condition

:
of
:::::::

interest.
:::
This

:::::
cohort

:::
can

::::
then

::
act

::
as

:
a
::::
silver

:::::::
standard,

::::::
against

:::::
which

::::::::
phenotype

::::::::
definitions

:::
can

:::
be

:::::::
validated,

:
in
::::

this
:::
case

::
by

:::::
using

::
the

:::::::
matched

::::::::::
probabilities

:
to
::::::::

construct
::::
totals

::::
from

:::::
which

::::::::
sensitivity,

::::::::
specificity

::::
and

::::::
positive

::::::::
predictive

::::
value

::::
(PPV)

:::
are

::::::::
calculated.

There is also an argument for the automated combination of differ-ent validation approaches, to avoid the shortcomings of each indi-vidual approach. For example, using a disease registry approachalone as a gold standard for phenotypes related to that disease,is not scalable or feasible for patient cohorts focusing on multi-morbidities and complex demographic criteria. Similarly, validat-ing using clinical notes reviews
:::::
review, where phenotype patientmatches are manually reviewed, are not sustainable for large LHSinfrastructures. While the manual text extraction of phenotypescan be effective in smaller scenarios, it is heavily dependent on thehuman expert and the sample being analysed, and not well-suitedto cross-site studies with differences in clinical and operationalprocedures and opinion between sites.

As such, phenotype libraries should offer novel hybrid approachesto validation that encompass structured data, free text
:
, and ancillarysources for both structured and unstructured data.

Enable feedbackTo facilitate any (informal) user-based validation of stored def-initions, a phenotype library should support social interactionsbetween the authors and researchers that use it, with a view toproviding authors with feedback and allowing them to address thisfeedback accordingly. Social functionality is supported by the Phe-notype Knowledge Base (PheKB), which currently hosts around 70phenotype definitions [13]. For example, within the library, usersare able to post comments or questions against different pheno-types. A researcher can also request collaboration on the develop-ment of phenotype definitions.
However, those users permitted to interact with a phenotype defi-nition within a portal may be restricted. Within PheKB, only userswith certain organisational affiliations (e.g. the eMerge

::::::
eMERGEnerwork or the Phenome-Wide Association Studies (PheWAS) com-munity [40]) are provided with access by default, with other usersrequired to request an account prior to providing feedback on defi-nitions. Other portals may restrict access to different countries orregions.

In many cases, these restrictions are necessary during the devel-opment of a phenotype. For example,
:

APHRODITE’s definitionrepositories are kept private while they are still under development.However, once developed, definitions can be accessed through therepository via any web browser or through an R shiny
::::
Shiny app.Based on practices such as these, phenotype libraries should limitthe restrictions they place on those who can engage with the defini-tions in phenotype libraries, once developed. By eliciting commentson the validity of hosted definitions from a wider audience, one islikely to gain a greater understanding as to the quality of a defini-tion.

Sharing andWarehousing

Once a phenotype definition is appropriately reproducible, portableand validated, it should then be accessible for use by others. Whilethe traditional and default role of a phenotype library is to providesuch access, this can be optimised, as discussed in the followingsections.
Expose a standard APITo maximise accessibility, a phenotype library should facilitateuser interactions via multiple interfaces. The definitions in a li-brary are usually available via a single interface: a graphical front-end. While this provides a reasonable baseline for accessibility, itdoes not maximise it. For example, a user cannot instruct a pieceof software to interact with the library, to include definitions di-rectly within a piece of code, resulting in potential inconsistenciesarising from manual entry. Similarly, existing software systems,such as decision-support systems, cannot autonomously access
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Figure 4. Overview of the services that constitute the HDR UK phenotype library

phenotypic information. Perhaps most importantly, a lack of pro-grammatic accessibility means that one library cannot easily accessthe functionality of another in order to provide complimentaryfunctionality.
To address these issue, phenotype libraries should offer API-levelweb services that (at a minimum) duplicate the functionality avail-able in a user interface. In doing so, several considerations shouldbe made. Firstly, the level of API access needs to be considered,including whether to provide access only to trusted partners, andthus provide suitable authentication mechanisms (e.g. OAuth), orwhether to make the API publicly accessible. The selection of thetype of API level access provided to the functionality of the web re-source should be subject to the policy of the organisation developingthe library. Secondly, the protocol used to facilitate communicationwith the API should be considered, such as Remote Procedure Call(RPC), Service Object Access Protocol (SOAP) and RepresentationState Transfer (REST). REST is a simple and widely adopted speci-fication model [41], and is thus the technology that is likely to bemost attractive when constructing a library API. Next, to supportprogrammatic access and enable definitions to be differentiated au-tomatically, a formal identification system should be established foreach definition. The most straightforward way to this is to leveragethe UUID attributed to each phenotype version.
The functionality of the API itself also needs to be considered. In [1],the authors propose that an API service should be used to constructphenotype definitions for the purpose of defining inclusion andexclusion criteria for clinical research trials. Building on this out-line, we consider several additional API level use cases, including:searching phenotype definitions, extracting a specific phenotypedefinition, submitting a new phenotype definition, submitting anew use case for an existing phenotype definition or validating anexisting definition and linking a phenotype definition with a datasource, and vice-versa. Examples of specific functionality that anAPI level phenomics resource should support within each of theseuse cases is given in Table 3.
The benefits of API functionality are evident in the CALIBER, Phe-noflow and Concept Library libraries, each of which communicatetogether to collectively form, along with a dataset Gateway, theHDR UK phenomics resource. As shown in Figure 4, each libraryoperates as service, and collectively these services are able to deliverthe functionality of a single library to a user. The services at thecore of this library are the Concept Library and the CALIBER library,each of which store phenotype definitions. Using provided APIs,the Concept Library is able to import definitions from the CALIBERlibrary, enabling phenotypes to be both formally stored and vali-dated across both services, respectively. Similarly, the Phenoflowservice – also capable of automatically importing and representing

definitions using a workflow-based model, and generating a cor-responding computable form for execution against a local dataset– is able to import definitions from both the Concept Library andCALIBER. Finally, the Gateway service provides access to a com-prehensive collection of datasets, which are linked to by servicessuch as CALIBER, when a given phenotype definition is presentin one of the hosted datasets. Similarly, the Gateway links backto CALIBER when a phenotype is present in a dataset, in order tofacilitate searches based upon these definitions.
Offer advanced search capabilitiesThe accessibility of existing phenotypes within a library relies onits search capabilities. Searches based on given name or identifierand version should enable simple use cases. For example, PheKBoffers comprehensive search functionality, with users not only ableto perform searches against the definitions themselves using givenkeywords, but also against supporting definition content, such asarticles, implementations and datasets. Alternatively, the libraryhas the option to list all phenotype definitions – including phe-notype definitions under development, if the user is logged in –where a user can instead filter the definitions returned after thefact, based on properties such as the authoring institution.
While the search functionality offered by PheKB is helpful, moreadvanced search capabilities should be supported to facilitate bothmore complex cases and improved information retrieval. This in-cludes searches based on specific codes, or groups of codes, or anapproximate pattern matching, based on regular patterns or eventext similarity. Synonyms (including abbreviations and acronyms)may also be used as a mechanism to improve search results overkeyword searches. For example, a search for ‘diabetes’ would likelyfail to find a phenotype that refers to ‘T2DM’ throughout, although‘T2DM’ is a recognised abbreviation that can be semantically linkedvia the UMLS.
Even more advanced capabilities might include searches employingsemantic similarity between a given set of concepts and the storedphenotypes supported by phenotype ontologies [42]. This couldenable the discovery of semantically identical or closely relatedconcepts within the library. Similarly, similarity metrics betweenphenotype definitions, facilitated by the adoption of a formal phe-notype model, are likely assist in scalable searches across differentrepositories, whereby a partial match may indicate a usable cohortdefinition to investigate.
Include comprehensive metadataThe search and browse features described must be supported byappropriate metadata, which can be used to describe both the sub-ject and format of phenotypes in ways that make them findable tousers with specific research or clinical needs. Such definitions wemight refer to as ‘FAIR Phenotypes’ [43]. To achieve this, each phe-notype definition should include structured data that describes thesubject (i.e., clinical condition) and intent (screening, etc.) of thedefinition, as well as the source, date, publisher, etc., similar to thetagging of resources in traditional libraries. Additionally, each com-ponent of the phenotype model (e.g., underlying data model, dataelements, value sets, code lists, coding language) must be specifiedwith an assigned code or value so that users can search on thesefeatures or have them displayed when browsing a phenotype libraryor repository. Examples of existing libraries that look to attributeappropriate metadata to stored definitions include CALIBER andPheKB (Figure 5).
In addition to supporting search, the use of metadata is impor-tant for a number of other reasons. Firstly, metadata can makeclear characteristics of phenotypes related to their accessibility, in-teroperability and re-use. To this end, as part of the MobilizingComputable Biomedical Knowledge (MCBK) initiative, Alper andFlynn et al. have proposed 12 categories of metadata that are re-
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Figure 5. Metadata structure adopted by CALIBER (left) and PheKB (right).

quired to fully represent knowledge objects, including phenotypes,for FAIR principled criteria [44]. In addition, metadata fields thatdescribe the versioning aspects of a definition can be populated tofurther formalise the provenance of the phenotypes in a collection.Next, as the intent, development, and validation of phenotypes areessential for potential implementers to understand in order to trustthe quality and appropriateness of a phenotype for a new purpose,representing aspects of the pheontype development and validationprocess formally is critical. To do this, the Trust and Policy WorkGroup of the Patient-Centered Clinical Decision Support LearningNetwork defined
::
an extensive set of metadata for trust [45]. Finally,metadata can be used to formally represent many aspects of theimplementation and tooling described, enabling potential imple-menters to search on these features, such as language, and possiblysupport automated translations.

While more and robust metadata are beneficial from a library per-spective, populating these metadata accurately and consistentlyrequire
::::::

requires resources, and the extent and detail of metadatawill depend upon a balance to adequately meet the needs at theexpense that the library sponsor will bear. One potential solutionto this issue is
:
to
:

automatically generate metadata, which is theapproach taken in data management platforms [46]. Overall, timewill show how the community of phenotype users can develop con-sensus on
:
a minimum set of metadata, library or indexing bestpractices to complement and formalise the desiderata describedhere, and also build a compelling value case for their use to supporthigh quality phenotyping across countries.

Conclusions

While making significant advances, computable phenotyping isstill at an early stage where methods and repositories are emergingto meet the needs of a range of medical research domains, with littlemethodological consensus. As tooling gradually matures beyondthe realm of early adopters to become usable for a broad spectrum ofresearchers and implementers, the focus needs to move away fromone-size-fits-all ‘perfect’ phenotype definitions to acknowledgingthe diversity of phenotype application areas,
::
the

:
resultant explosionin the numbers and variations of phenotypes to be stored , and

:
–

:
in
::::::::

particular
:::
the

:::::
arrival

::
of

:::::::
advanced

:::::::::
probabilistic

::::
and

::::::::
NLP-based

::::::::
phenotypes

::
to
:::

sit
:::::::
alongside

:::::::::
traditional

::::::::
rule-based

::::::::
definitions

::
–

:::
and the challenges of deploying them in the real world

:
,
:::::::
especially

:
in
:::

the
:::::::
presence

::
of

:::::::::::::
high-throughput

::::::::::
requirements. Portability and

reproducibility are essential in addressing this scaling-up, withtechniques needed to move phenotype definitions between bothdata sources and different health settings.
Phenotype libraries offer a natural meeting point of these multipleuse-cases and domains to support high-quality phenotype defini-tions. In terms of designing phenotype libraries as technical entitiesthat enable the storage and retrieval of definitions, there is a clearneed to track the evolution of phenotype definitions as they areauthored, support advanced search techniques that enable thesedefinitions to be located by others, and establish a collaborativeprocess through which the validity of definitions can be critiqued.All of this functionality should be accessible within a library viamultiple channels, in particular comprehensive, standards-basedAPI functionality to ensure interoperability. Authoring and storingphenotype definitions according to a standard model is another as-pect through which phenotype libraries can contribute to definitionreproducibility. The model adopted by a phenotype library shouldexist at the correct level of abstraction, prioritising modelling lan-guages over executable programming languages, and offset this,in terms of implementation, by incorporating key implementationinformation, and improving clarity through multi-dimensionaldescriptions. Finally, a phenotype library should encourage theuse of phenotype definitions in new use cases by supporting thevalidation process, both automatically, and through the definitionof a structured validation process.
The impact of supporting the development and implementation ofhigh-quality phenotype definitions is significant, particularly asthese definitions provide efficient access to accurate cohort databy overcoming many of the complexities associated with patientdatasets. Cohort data not only supports research studies (e.g. theidentification of predictors for a certain condition), but also theprovision of decision support (e.g. access to the medical histories ofone or more individuals) and clinical trials (e.g. the establishmentof trial cohorts). The use of computable phenotypes to determinecohorts from complex datasets for these purposes can be comple-mented by using traditional big data techniques to manage scale; byan increased focus on multi-morbidities – the complex interactionsof diseases in patients – which are a crucial factor in personaliseddecision support systems; and by N-of-1 clinical trial design.
Overall, running through these desiderata is the awareness thatcross-domain sharing of phenotype definitions can only occurthrough curated libraries that evolve in a controlled manner. Suchlibraries have to be 1) clinically and scientifically valid; 2) techni-
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cally realisable; and 3) usable by researchers in different domains.Through the usage of our desiderata, we believe the current andfuture phenotype libraries will deliver on these three fronts.
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Abstract

Background High-quality phenotype definitions are desirable to enable the extraction of patient cohorts from large
electronic health record (EHR) repositories, and are characterised by properties such as portability, reproducibility and
validity. Phenotype libraries, where definitions are stored, have the potential to contribute significantly to the quality of
the definitions they host. In this work, we present a set of desiderata for the design of a next-generation phenotype
library that is able to ensure the quality of hosted definitions by combining the functionality currently offered by
disparate tooling. Methods A group of researchers examined work to date on phenotype models, implementation and
validation, as well as contemporary phenotype libraries developed as a part of their own phenomics communities.
Existing phenotype frameworks were also examined. This work was translated and refined by all the authors into a set
of best practices. Results We present 14 library desiderata that promote high-quality phenotype definitions, in the areas
of modelling, logging, validation and sharing and warehousing. Conclusions There are a number of choices to be made
when constructing phenotype libraries. Our considerations distil the best practices in the field and include pointers
towards their further development to support portable, reproducible, and clinically valid phenotype design. The
provision of high-quality phenotype definitions enables EHR data to be more effectively used in medical domains.
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Key Points

• Portable, reproducible and clinically valid phenotype definitions have the potential to unlock health data repositories for
wider and more effective use.

• To ensure definitions are of high quality, associated tools should be supported directly through the libraries where pheno-
type definitions are hosted.

• 14 desiderata are presented to guide the development of future phenotype libraries, and to ensure phenotype definitions
are of a sufficient quality to enable the effective use of medical data in research and in healthcare provision.

Introduction

As a result of digitisation of health systems world-wide, elec-
tronic health record (EHR) data repositories have emerged as
the main source of data for medical cohort research studies. To
extract these cohorts, there is an increasing reliance on EHR-
based phenotype definitions (also referred to as phenotyping al-
gorithms), which identify individuals that exhibit certain phe-
notypic traits, such as the same diseases, characteristics, or
set of co-morbidities. These definitions can be represented in
many forms, including narrative descriptions, pseudo-code, or,
in some cases, may already be directly executable. Conceptu-
ally, they may vary from simple code lists, via rule-based al-
gorithms to more involved machine learning (ML) tasks and
high-throughput approaches using natural language process-
ing (NLP).
While traditional big data techniques can successfully address
the scale of the EHR data available, the effectiveness of pheno-
type definitions is impacted by a range of other syntactic and
semantic issues, including variations in the way data is struc-
tured and the coding systems used.
To overcome these issue and enable effective cohort extraction,
a phenotype definition must exhibit certain properties. It must
be reproducible allowing for accurate (re)implementation, ir-
respective of the idiosyncrasies of the dataset against which
the definition was originally developed; portable, allowing for
straightforward implementation, irrespective of the structure
of the target dataset; and valid, effectively capturing the dis-
ease or condition modelled. A definition that exhibits all of
these properties we refer to as high quality.
To ensure high-quality phenotype definitions, support should
be provided to the authoring, implementation, validation and
dissemination processes of a phenotype’s lifecycle. While such
support is currently available, it is often sporadic and inconsis-
tent as it is delivered via a wide range of different tools. In-
stead, building on the work of Richesson et. al [1], we propose
that the functionality provided by these tools should instead
be provided centrally, through the phenotype libraries where
definitions are hosted. For example, libraries should enable
phenotypes to be developed according to some set of standard
models, and track the evolution of definitions under these mod-
els, so as to ensure hosted definitions are clearer to understand
and thus have the potential to be more reproducible. Moreover,
libraries should assist in the derivation of directly computable
phenotype definitions, through the provision of implementa-
tion tooling, to improve portability by enabling the execution
of phenotypes in local use cases. Similarly, libraries should di-
rectly validate the definitions they host, through, for example,
automated comparisons with gold standards.
To this end, in this work we contribute a number of desider-
ata for the development of phenotype libraries, which not only
ensure that definitions are accessible, but also maximise the
quality of the phenotypes they contain by supporting all parts

of the definition lifecycle. These desiderata are based on both
the lessons learned during the development of contemporary
libraries within the authors’ own phenomics communities, as
well as a review of the functionality currently offered by phe-
notype tooling, which represent practices that have lead to the
development of high-quality phenotype definitions. By provid-
ing access to high-quality definitions, phenotype libraries en-
able both efficient and accurate use of EHR data for activities
such as medical research, decision support and clinical trial re-
cruitment.

Background

Human phenomics is the study of human phenotypes, and in-
cludes the science and practice of defining observable medical
phenomena that indicate phenotypes to advance research and
personalised care. The concept of a phenotype originated as
a complement to the genotype, and a phenome was defined
as a complete set of an individual’s inheritable characteristics.
Rather than describing someone’s genetic information, a phe-
nome captures all the observable properties (phenotypes) that
result from the interaction of their genetic make-up and en-
vironmental factors, including their demographic information,
such as height or eye color, and medical histories.
With the emergence of large-scale EHR data repositories, the
term phenotype has evolved to denote traits shared by groups
of patients, such as a disease or condition that a cohort, or
set of individuals, has. This may also include other complex
combinations of traits, exposures, or outcomes, including co-
morbidities, polypharmacy, and demographic data. Defining
these phenotypes, and validating them to ensure their accu-
racy and generalisability, is the process known as phenotyp-
ing, with EHR-based phenotyping relying primarily on data in
the EHR. Computational phenotyping (also known as deep phe-
notyping) uses either supervised machine learning techniques
to discover new members of a priorly defined cohort, or unsu-
pervised techniques to discover entirely new phenotypes and
investigate their properties.
EHR data repositories bring with them a very specific set of
data challenges in terms of managing syntactic and semantic
complexity, which act as a barrier to studies that need to utilise
patient information from across multiple data sources and for
the needs of different studies. For example, by the nature of
healthcare delivery and how EHRs are used to document, a pa-
tient who has been diagnosed with diabetes mellitus may be
represented slightly differently in two EHR systems, and will
almost certainly be represented differently in EHRs for differ-
ent countries.
Phenotype libraries – where definitions can be uploaded, stored,
indexed, retrieved, and downloaded by users – provide a logical
place in which to ensure that definitions are of a suitable qual-
ity to overcome many of the issues associated with extracting
cohorts from complex EHR datasets. This is accentuated by the
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fact that the development of phenotype libraries is a rapidly
growing area. Of particular note is the Observational Health
Data Sciences and Informatics (OHDSI) Gold Standard Pheno-
type Library, which aims to support OHDSI community mem-
bers in finding, evaluating and utilising cohort definitions that
are validated by the research community. An initial version of
the library is currently available, alongside a wider set of re-
quirements to guide its future development [2]. Other libraries
planned for development include the VAPheLib [3], which aims
to collect, store and make available 1000 curated phenotype def-
initions for the clinical operations research community by the
end of 2021. Phenotype libraries are also being developed as
a part of wider phenotype frameworks. Alongside Richesson’s
reusable phenotype definition framework sit initiatives such as
the phenotyping pipeline (PheP), which aims to extract, struc-
ture and normalise phenotypes from EHR data collected across
participating sites [4].

Methods

To determine the functionality that should be provided by a
next-generation phenotype library, a team of international re-
searchers – comprising Health Data Research UK (HDR UK)
Phenomics theme members and US researchers from the Mobi-
lizing Computable Biomedical Knowledge (MCBK) and Pheno-
type Execution and Modelling Architecture (PhEMA) communi-
ties – first examined a range of tools supporting different parts
of the definition lifecycle, which were developed within their
respective phenomics communities. This was enriched with a
wider review of the literature via Web of Science (WoS) [5] and
the grey literature via Google to identify third-party projects
that have developed phenotype tooling, or are planning its
development, and future trends. Our decision to include the
grey literature was informed by our a priori knowledge of tools
under development that have not yet published peer-review
articles. The tools reviewed included those that support au-
thoring (e.g., modelling using the Quality Data Model (QDM)
logic [6], the Clinical Quality Language (CQL) [7], and use of
the Observational Medical Outcomes Partnership (OMOP) Com-
mon Data Model (CDM) [8] and associated tooling such as
OHDSI’s Automated PHenotype Routine for Observational Def-
inition, Identification, Training and Evaluation (APHRODITE)
[9]), implementation (e.g., definition translators [10]) and val-
idation (e.g., electronic phenotyping validation [11]). Common
functionality provided by the tools identified – representing
opportunities for new phenotype library functionality – was
extracted and summarised.

In addition, the authors examined existing libraries from
within their own communities – including the Phenotype
Knowledge Base (PheKB) [12], CALIBER [13], Phenoflow [14]
and the Concept Library [15] – to identify instances of func-
tionality currently supporting the phenotype definition lifecy-
cle. Common functionality provided by these libraries – which
has been shown to result in reproducible, portable and valid
phenotype definitions, and thus represent best practice – was
also extracted and summarised.

Both of these summaries were translated to a draft set of
desiderata via discussion amongst a subset of the authors [MC,
SM, EJ, SD, VC]. All authors participated in an asynchronous
iterative review process to critique, consolidate, refine, and de-
fine the final set of desiderata. The desiderata were further
classified into logical categories.

Desiderata

In total, the authors arrived at a finalised collection of 14
desiderata, which are organised across the following sections
into five categories: modelling, logging, implementation, vali-
dation and sharing and warehousing. Figure 1 shows how the
desiderata presented promote the design of a phenotype library
that supports all parts of the phenotype definition lifecycle.

Modelling

Phenotype models govern the structure and syntax of pheno-
type definitions. For example, phenotype definitions are tradi-
tionally rule-based, meaning that they are comprised of indi-
vidual logical statements that each evaluate to a boolean value,
typically by relating data elements (with associated values) –
such as the presence of a particular set of ICD-10 codes or a par-
ticular lab result – to each other. The set of operators available
to an author when connecting data elements (e.g. logical con-
nectives such as conjunction and disjunction) would be estab-
lished within a phenotype definition model. A model may dic-
tate that a phenotype be represented in an unstructured, semi-
structured, structured, or executable manner [16]. A summary
of different phenotype definition formats, governed by pheno-
type models, is given in Table 1.
Implementing a phenotype definition involves translating the
abstract definition (if unstructured or semi-structured) into
an executable form that can be directly run against a patient
dataset in order to derive the cohort exhibiting the defined
phenotype. Typically this requires the logic of the definition
to be realised in a programming language, such as translat-
ing abstract conditional clauses into a set of tangible Python
conditional statements. We refer to these implementations as
computable phenotypes. For a definition to be reproducible, it
must be realised in a formal structure that can be accurately
interpreted and implemented. Given the potential for human
error in translating from an unstructured narrative to some-
thing computable, formal phenotype models provide such a
structure.
Phenotype models are also key in ensuring semantic interoper-
ability between definitions. That is, while the development of
phenotype definitions can involve deriving a curated, canoni-
cal set of phenotype definitions containing ‘definitive’ versions
for each disease of condition being modelled for a particular do-
main (e.g. a national stroke body may want to maintain their
set of stroke phenotyping algorithms), more often than not, it
is perfectly valid to have overlapping phenotype definitions for
different uses. For example, an eligibility criteria for a clini-
cal trial may differ from a rule that triggers a decision support
tool in an EHR system, and both would differ from a definition
used in a population health study, even if all three nominally
refer to same disease [17]. Internationally, definitions for the
same disease may also differ [18]. While this overlap is permis-
sible, different definitions for the same condition must still be
compatible, enabling, for example, their relative functionality
to be compared. The adoption of a phenotype model enables
such compatibility.
Given these benefits, a phenotype library should adopt a formal
phenotype model to control the structure of hosted definitions.
To ensure the use of such a model, a library can offer a graphi-
cal authoring environment – in the same way that tools such as
the Phenotype Execution and Modelling architecture (PhEMA)
Authoring Tool (PhAT) do [6] – through which new definitions
can be authored. Similarly, existing definitions can be automat-
ically checked for their adherence to the chosen model when
uploaded.
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Figure 1. The stages of the phenotype definition lifecycle supported by a next-generation phenotype library.

Table 1. Phenotype definition formats
Format Description Example Category
Code list A set of codes that must exist in a patient’s health

record in order to include them within a pheno-
type cohort

COVID-19 ICD-10 code U07.1 Rule-based

Simple data elements Formalising the relationship between code-
based data elements using logical connectives

COVID-19 ICD-10 code U07.1 AND ICD-11
code RA01.0

Rule-based
Complex data elements Formalising the relationship between complex

data elements, such as those derived via NLP.
Patient’s blood pressure reading > 140
OR patient notes contain ‘high BP’

Rule-based
Temporal Prefix rules with temporal qualifiers Albumin levels increased by 25% over 6

hours, high blood pressure reading has
to occur during hospitalisation.

Rule-based

Trained classifier Use rule-based definitions as the basis for con-
structing a classifier for future (or additional) co-
horts

A k-fold cross validated classifier capa-
ble of identifying COVID-19 patients

Probabilistic

Desiderata relating to the adoption of a phenotype model by
a library are listed in the following sections. We view these
desiderata as complementary to the well-established desider-
ata for phenotype definition model development put forward
by Mo et al. [19].
Support modelling languages
The phenotype definition model adopted by a library should
be supported by a (non-executable) high-level modelling lan-
guage that dictates the syntax available to an author when
defining the logic of a phenotype. A computable form of the
definition can then be realised for execution in a local use case.
When selecting or developing a definition model, the tempta-
tion may be to select a lower-level, executable programming
language, in an attempt to expedite local implementation. For
example, one could argue that a language such as Python is suf-
ficient for simultaneously defining phenotypes and realising
them computationally. However, we would argue that using
such a language as a means to express the logic of a definition
ties the definition to general purpose, low-level language con-
structs, reducing clarity, and thus reproducibility. This conclu-
sion is supported by work such as [20], which found openEHR
an overly restrictive standard when attempting to express phe-
notype definitions in a form that can be directly executed. An
example of a phenotype definition realised in an executable lan-
guage (Python) is given in Figure 2.
In contrast, the syntax of higher-level modelling languages,
while still precise, is often clearer, as well as often being do-
main specific. For example PhEMA’s PhAT allows users to de-
fine phenotypes using the high-level, domain-specific syntax

1 va lu e s e t={}
2 va lu e s e t [ ‘ ‘ Acute Pharyng i t i s ” ] = ‘ ‘ 2 . 1 6 . 8 4 0 . . . 1 0 1 1 ”
3 va lu e s e t [ ‘ ‘ Acute T o n s i l i t i s ” ] = ‘ ‘ 2 . 1 6 . 8 4 0 . . . 1 0 1 2 ”
4
5 def Pharyng i t i s ( ) :
6 condit ionA = va lu e s e t [ ‘ ‘ Acute Pharyng i t i s ” ]
7 condit ionB = va lu e s e t [ ‘ ‘ Acute T o n s i l i t i s ” ]
8 return condit ionA + ‘ ‘ ” + condit ionB ;

1 va lu e s e t ‘ ‘ Acute Pharyng i t i s ” : ‘ ‘ 2 . 1 6 . 8 4 0 . . . 1 0 1 1 ”
2 va lu e s e t ‘ ‘ Acute T o n s i l i t i s : ‘ ‘ 2 . 1 6 . 8 4 0 . . . 1 0 1 2 ”
3
4 de f i n e Pharyng i t i s :
5 [ Condit ion : ‘ ‘ Acute Pharyng i t i s ” ] union

[ Condit ion : ‘ ‘ Acute T o n s i l i t i s ” ]

Figure 2. Python (executable) vs. CQL (modelling) [21] representation of
Pharyngitis phenotype.
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associated with the Quality Data Model’s (QDM) logic expres-
sions (now capable of working instead with the Clinical Qual-
ity Language (CQL) [7]). Both QDM and CQL make particular
provision for the representation of temporal information, such
as the (sequential) relationship between events, or between
events and defined measurement periods. A further example
of a modelling language is OHDSI’s cohort definition syntax,
which although tied directly to the OMOP CDM, is also high-
level and domain specific, allowing for significant clarity when
interpreting existing definitions [8]. Like QDM/CQL, this syn-
tax also makes provision for temporal elements (e.g. associat-
ing patient observations to an elapsed time period), but looks
more holistically at the cohort relating to the phenotype be-
ing defined, through, for example, the use of specified inclu-
sion and exclusion criteria. As a final example, Phenoflow’s
workflow-based model relies on a categorised set of steps to
express phenotype definitions, with the same benefits [14]. An
example of a phenotype realised in a higher level modelling
language (CQL) is also given in Figure 2 for comparison.
It is also important to note that the use of a modelling lan-
guage as the basis for a phenotype model does not preclude
the utility or use of higher-level, (more) human-readable rep-
resentations such as flowcharts. In fact, modelling languages
typically connect well with such representations. For example,
flowcharts can be directly generated from Phenoflow’s work-
flow model, QDM is linked to a graphical HTML layer and
OHDSI cohorts can be viewed graphically using the ATLAS co-
hort editor.
Support Natural Language Processing-based and Machine
Learning-based definitions
The modelling language selected to form the basis of a pheno-
type definition model should also support the representation
of a wider range of definition types (Table 1). That is, under a
definition model, one should be able to express not only stan-
dard rule-based definitions, but also more complex definitions
based on Machine Learning (ML) and Natural Language Pro-
cessing (NLP) techniques. These techniques are becoming in-
creasingly prevalent, particularly in those situations where the
datasets against which the implemented definition is to be exe-
cuted are of varying completeness or lack consistent record cod-
ing. The use of modelling languages to represent these types of
definitions is also important for reproducibility, as the use of
an abstract representation reduces the potential for references
to implemented libraries, commonly used by NLP and ML tech-
niques.
Critically, in order to sufficiently represent both ML and NLP-
based phenotypes, a modelling language must be able to repre-
sent not only static information (as in rule-based phenotypes)
but also complex processes. For example, in the case of ML, a
definition may consist of a static, high-level specification of a
trained patient classifier (via the provision of values such as
feature coefficients), or may be a more complex description
of the workflow used to train a classifier for a given condi-
tion, with a view to the classifier being re-implemented in new
use cases, or training a new model in new use cases, respec-
tively. The workflow used to train a classifier may involve the
identification of cases using the presence of certain keywords
within an EHR [22] or, as in the case of the PheNorm frame-
work, may involve additional steps, such as normalisation (to
factor in number of encounters when looking at the signifi-
cance of a larger number of keywords or codes) and denoising
(to look at the wider context of a keyword or code count, e.g.
competing diagnoses) [23]. The high-level definition of ma-
chine learning-based, or probabilistic, phenotypes in this way
is supported in the OHDSI’s Automated PHenotype Routine for
Observational Definition, Identification, Training and Evalua-

tion (APHRODITE) computable phenotype framework, which,
although also linked to the OMOP CDM, offers a level of abstrac-
tion at which trained classifiers can be represented and ported
between sites, or a defined workflow can be used to construct
site-specific classifiers, when used in an executable form [24].
In the case of NLP, a definition may consist of a simple list of
keywords relating to a given medical concept, or a set of regular
expressions (not tied to any specific programming language),
with a view to these being used as the basis for identifying con-
ditions from free-text in a medical record, when realised in a
computable form. However, like ML, NLP-based phenotype
definitions are also often associated with complex processes,
especially when used to conduct high-throughput phenotyping.
For example, a PheMap phenotype definition consists of a set of
linked concepts, the presence of which in a patient’s EHR are
used to determine the probability of them having the condition
represented [25]. The association of a phenotype with different
concepts is defined within the PheMap knowledge base, which
is constructed based on a process that uses a specific set of
NLP tools to derive these associations based on the content of
various text-based resources. Therefore, it is also important
to represent this process as a part of any definition, especially
if the knowledge base needs to be reconstructed within differ-
ent domains. In instances such as these, it may be important
for the definition model used to include guidance on the use
of specific tools, but it must do so in a manner that retains
clarity and generalisability, thus balancing reproducibility re-
quirements. Modelling languages like CQL have the potential
to link to external tooling, for the purposes of effectively captur-
ing NLP and ML processes such as these.
Support multi-dimensional descriptions
A significant hurdle in porting a phenotype definition from one
setting (institution or dataset) to another – a process we refer
to as localisation – is understanding its structure and seman-
tics in order to derive a local computable form, or modify an
existing one. Complex rules and the use of idiomatic clinical
terminology, although often necessary components of a defini-
tion, are both barriers to this understanding, and thus repro-
ducibility. To address this issue, a phenotype definition model
should allow an author to express the same logic of a phenotype
at different levels of technical complexity. This approach aims
to communicate supplementary information alongside the pro-
vision of the core definition logic. For example, the workflow-
based Phenoflow model allows an author to use the technical
terminology and rules required to express a phenotype defini-
tion, but then also requires an author to provide longer defini-
tions of this functionality to improve clarity, and to also clas-
sify each unit of functionality under a given ontology, enabling
a high-level understanding of the functionality to always be
accessible. In other modelling languages like CQL, such infor-
mation can be communicated using constructs such as inline
comments.

Logging

The development of a phenotype definition is an incremen-
tal process. Capturing and communicating this process is key
in ensuring a definition can be accurately interpreted and is
thus reproducible. Moreover, this information strengthens the
trustworthiness of a phenotype and thus its potential applica-
tions. Therefore, phenotype libraries should provide a mecha-
nism for logging the evolution of a phenotype definition.
Support versioning and data provenance
One way in which a phenotype can evolve is through a series of
iterative refinements. SAIL Databank’s Concept Library stores
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Figure 3. An example data provenance trace showing an update to a dementia
phenotype, using the W3C PROV standard. The initial version of the phenotype
(1) is updated by four edit activities (2), each of which modifies a component
of the definition (e.g. record extract logic, diagnostic codes, previous history)
(3), in order to generate a new version (4), and the process is linked with the
author making these edits (5).

phenotypes as sets of codes, with a view to making these phe-
notypes available in different studies and use cases [15]. The
concept library, as the name suggests, focuses on a model un-
der which phenotypes are collections of grouped medical con-
cepts or working sets. The Concept Library records and commu-
nicates the evolution of a phenotype definition using methods
akin to standard version control, logging the state of a phe-
notype after each revision, and thus provides an overview of
the definition’s progression. This versioning process often re-
lies on attributing a universally unique identifier (UUID) to
each definition, and each subsequent revision of that defini-
tion. Such an identifier might simply be incremental, or con-
vey some details of the phenotype itself. It should also be inde-
pendent of other identifiers, in order to maximise clarity [26].
For example, within APHRODITE a UUID is derived by commit-
ting (each version of) a generated definition to a GitHub repos-
itory and extracting the unique commit hash value, in accor-
dance with the FAIR (Findable, Accessible, Interoperable and
Reusable) principles [27].
A more comprehensive way to capture the evolution of a def-
inition – and thus contribute to its reproducibility – is to de-
ploy formal data provenance capture tools to capture richer, real-
time information about the evolution of an entity. This might
include information about updates to the structure of a defini-
tion, or details of how that definition was validated. It might
also include information about how the definition was derived
if, for example, the definition is a trained model. An example of
one such tool is the data provenance template server [28], which
allows for the specification of abstract templates, based on the
W3C PROV standard [29], while eliminating the complexity of
dealing with low-level provenance constructs.
Using provenance tools, a trace is automatically constructed
that can be queried in order to answer a range of questions,
such as which clinical codes were used to support a definition
at a given time. The Phenoflow library is integrated with the

provenance template server, enabling the evolution of the def-
initions it hosts to be tracked over time [30]. A fragment of
provenance constructed in this manner is shown in Figure 3.
Support modular relationships between phenotypes
Another way in which phenotype definitions evolve is through
their reuse in constructing new definitions. For example, a
phenotype may, either in part or entirely, be defined by other
self-contained phenotypes. For example, bipolar disorder is (in
part) defined by both substance and alcohol abuse, two pheno-
types in their own right [31]. In this way, existing phenotypes
become the building blocks for new phenotypes. Much like a
version history, it is thus important to capture and commu-
nicate this information upon implementation, to provide de-
tailed insight into the formulation of the definition. As such,
a phenotype library should log the relationship between differ-
ent definitions and, if authoring capabilities are supported, a
library should allow new definitions to be constructed based
upon existing ones. This is similar to the approach taken by
the Concept Library, which relates concepts to each other in
order to create phenotype definitions, and by Finngen’s Risteys
platform, which relates phenotypes temporally, listing those
phenotypes that a patient is likely to exhibit either before or
after exhibiting another (e.g. the onset of depression after ex-
hibiting bipolar disorder) [32]. Establishing this relationship
further contributes to the provenance of a phenotype, the pre-
cision of its definition, and, consequently, its reproducibility.
Conversely, sub-phenotypes may be computationally derived
from existing phenotypes by clustering of those features (e.g.
demographic, diagnosis, medication, etc.) identified, by a
trained classifier, to be key attributes of those patients exhibit-
ing the parent phenotype [33]. Such a relationship should also
be logged by a phenotype library, to establish the evolution of
a definition, and track changes and dependencies across phe-
notype definitions.

Implementation

Our initial desiderata determined that phenotype definitions
should not themselves be executable. While important for re-
producibility, this raises natural issues around the complexity
of realising a phenotype defined using a modelling language
computationally for individual use cases, something that nega-
tively impacts portability. This issue can be addressed by meet-
ing several requirements, which are explored in the following
sections.
Communicate implementation information in the model
One way in which implementation can be supported is through
the definition itself, by communicating information pertinent
to its computable realisation. To do this, one might select a
phenotype definition model based on a modelling language that
allows an author to express additional information at different
levels of abstraction. For example, the Phenoflow model frames
the traditional (rule-based) logic of a phenotype definition as
an abstract layer, and allows an author to complement this layer
with additional layers, each of which gradually communicates
more implementation information: a functional layer, introduc-
ing the concept of data types, and a computational layer, ex-
pressing details such as target execution environments. The
fact that these layers sit alongside the traditional, abstract logic
layer, allows for more concrete implementation to be expressed
without impacting portability.
The abstract layer of the Phenoflow model is split into individ-
ual modules, each of which represents a distinct unit of func-
tionality, and which collectively define the process required for
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deriving a patient cohort from a set of health records. Each
module in the abstract layer has an equivalent module in both
the functional and computational layers, ensuring a correspon-
dence between each level of representation within the model.
However, these modules also provide another means by which
implementation information can be communicated through a
definition model, in that they provide a clear template for de-
velopment; each module represents a single unit of function-
ality that must be implemented by a developer when realising
the computable form. This reduces the implementation bur-
den on developers, and thus improves portability. Modelling
languages like CQL, which support the definition of individual
functions as a part of an abstract layer, offer similar benefits.
Support tooling that provides multiple programming language im-
plementations
Phenotype implementation tooling automatically takes an ab-
stract phenotype definition and translates it into a computable
form. This naturally improves portability. Examples of this
tooling include the translators developed by the PhEMA initia-
tive, which are able to take a modelling language definition of
a phenotype – such as definitions expressed in QDM, as pro-
duced by the PhAT, or in CQL – and transform them into ex-
ecutable formats (e.g pipelines [10]). In addition, the OHDSI
tools provide ways to take their domain specific representation
and translate it to SQL queries that execute against multiple
database systems adopting the OMOP CDM. Although all defi-
nitions are SQL, the different dialects used by database vendors
are akin to separate programming languages.
Given these benefits, a phenotype library should provide ac-
cess to implementation tooling. In the simplest form, access
should be provided to this tooling by hosting and indexing it
in a library, in the same way that the definitions themselves
are hosted and indexed. This tooling can then be downloaded,
along with a definition, and executed locally in order to pro-
duce a computable form. More advanced integrations will pro-
vide the functionality offered by implementation tooling di-
rectly through the library, by running it as a service that can be
accessed by users via the library in order to download the auto-
matically generated computable form of a phenotype. This is
the approach taken by the Phenoflow platform, which allows
users to obtain computable copies of a phenotype definition di-
rectly, by running a microservice generation architecture.
The tooling indexed should be able to support implementations
in a variety of different programming languages. While the
programming language used might seem to be of little conse-
quence, in practice, even with this presence of a translator, the
researcher generating a computable form for a new use case
is likely to still have to modify (localise) that computable phe-
notype for local use. Such modifications might include opti-
misations to the structure of the implementation to allow the
computable form to operate in low-memory environments or
to operate as a part of existing infrastructure (e.g. a clinical
trial platform [34]). In this instance, having that definition
in a language that the researcher is comfortable with editing
is important. For example, the pipeline-based implementa-
tion originally produced by the PheMA translator only supports
the KNIME format. As such, a researcher has to be comfort-
able with this format in order to make edits. To maximise
portability, phenotype libraries should aim to support imple-
mentation tooling capable of producing executable definitions
in multiple languages. An example of this is seen within the
Phenoflow platform, where one can generate a workflow that
utilises modules from a variety of languages, including Python
and Javascript, with containerised environments supporting
the straightforward execution of these units locally.

Support tooling that provides connectivity with multiple data stan-
dards
When a phenotype definition is translated by a piece of tool-
ing into an executable form, it is typical for that definition to
be tied to a given data source format, from which the result-
ing cohort is identified. In certain cases, that data format is
always the same. For example, OMOP cohort definitions, when
translated into a computable form (SQL), are always tailored
for the OMOP CDM. While beneficial in the sense that this pro-
vides an automated translation process that works across sites,
those sites must all adopt the OMOP CDM, which is not always
feasible. Instead, in reality, sites may use a variety of imple-
mentation formats, such as i2b2 and FHIR. For these reasons,
phenotype libraries should index implementation tooling that
not only supports multiple language implementations, but also
supports the realisation of definitions for different data for-
mats. Naturally, the more data source formats supported, the
more portable the definitions stored within a library are. For
example, the computable forms generated by PhEMA’s transla-
tors can be tailored for a variety of local data formats, including
FHIR and the OMOP CDM itself. Similarly, in the Phenoflow
library, interacting with a data source is considered to be the
first step in a phenotype’s definition, and as such different con-
nectors are available when generating the computable form of
a definition. These connectors support a variety of different
standards such as OMOP and i2b2, and plans are in place to
support dataset specific standards, such as the standard used
by UK Biobank (via tooling such as Funpack [35]).
The connector approach also provides a natural point at which
to conduct any necessary (automatic) translation between the
coding system adopted by a target data source, and the coding
system expected by the implemented definition. For example,
if the target datasource adopts Read codes, but the computable
phenotype relies on sets of ICD codes, a connector might not
only ingest data, but also perform code mappings accordingly.
Despite these benefits, the requirement to produce a new trans-
lator, or new connector, for each new data source format, is a
natural drawback to each of these approaches. However, the
advantages over manual translation are still clear.

Validation

Validating a phenotype definition involves confirming its accu-
racy. To do this, the cohort identified by a computable pheno-
type is typically compared to a reference standard, such as the
cohort identified by manual chart review from the same patient
population (a gold standard). The extent to which the two co-
horts overlap determines the validity of the definition. While
reference standards are a common means of phenotype valida-
tion, other techniques exist, and are listed in Table 2. Pheno-
type definitions that are shown to be accurate are considered
to be of a higher quality. Therefore, phenotype libraries should
facilitate the validation process.
Support a defined validation process
To support the validation of stored definitions, a phenotype
library should have a clear and scalable process for the sub-
mission of existing validation information by a user, across a
variety of the mechanisms shown in Table 2. This informa-
tion can then be stored and presented alongside each defini-
tion. For example, the CALIBER library stores phenotypes as
code sets (342, at the time of writing), with a view to provid-
ing a framework for the definition of consistent phenotypes,
which can then be reused by care service providers for nation-
wide EHR-based observational research [13]. Each definition in
CALIBER appears alongside algorithmic information about the
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Table 2. Phenotype validation mechanisms
Mechanism Description Example
Disease registries Compare the phenotype cohort with those present in the

registry.
Comparison of a diabetes phenotype cohort with
those patients present in a diabetes registry (e.g.
T1D exchange).

Chart review Compare the phenotype cohort with the patients identi-
fied by manual chart review.

Comparison with a diabetes gold standard, pro-
duced by double manual chart review of patients.

Cross-EHR concordance Compare percentage of cases identified by a phenotype
across different sources, and identify any overlap.

Comparison of the percentage of patients identi-
fied by a diabetes phenotype in primary and sec-
ondary care EHRs, and the identification of any
case overlap.

Risk factors Compare the magnitude of the phenotype cohort with
standard risk calculations.

Comparison with the output of a Cox hazards
model.

Prognosis Compare the magnitude of the phenotype cohort with ex-
ternal prognosis models.

Comparison with a survival analysis.
Genetic associations Compare whether the presence of a patient in a pheno-

type cohort is consistent with their genetic profile.
A patient is more likely to be a valid member of a
diabetes cohort if they have the HLA-DR3 gene.

relationship between the code sets and key validation informa-
tion. Specifically, the CALIBER library offers up to 6 different
techniques, which are used to validate a single definition. Sim-
ilarly, the OHDSI gold standard phenotype library is so-called
because there is a well-defined process proposed for the sub-
mission of phenotypes based on different user roles. Specifi-
cally, the submission of a computable phenotype definition to
the library (which can occur using the APHRODITE framework)
will require definitions to be submitted by those in the author
role, vetted by librarians, validated by users who act as validators
and used by standard users [36].
Automate multiple validation techniques
When new definitions are submitted without validation infor-
mation to a library, it should seek to automatically validate
these definitions by comparing them, or their outputs, against
assets that are hosted alongside the definitions, such as gold
standard datasets. For example, in [11], the authors present
electronic phenotyping validation, a framework for the automated
comparison of a definition with manual chart review results. In
the absence of such assets, a portal might host tooling designed
to derive these assets automatically. For example, PheValua-
tor trains a linear model based upon cases and controls iden-
tified using some of the techniques already discussed, such as
the presence (or absence) of a large number of clinical codes
relating to a certain condition within a patient’s record [37].
This model is used, in turn, to construct an evaluation cohort,
which matches each individual in the cohort to a probability
value indicating the likelihood of them having the condition of
interest. This cohort can then act as a silver standard, against
which phenotype definitions can be validated, in this case by
using the matched probabilities to construct totals from which
sensitivity, specificity and positive predictive value (PPV) are
calculated.
There is also an argument for the automated combination of
different validation approaches, to avoid the shortcomings of
each individual approach. For example, using a disease reg-
istry approach alone as a gold standard for phenotypes related
to that disease, is not scalable or feasible for patient cohorts
focusing on multi-morbidities and complex demographic cri-
teria. Similarly, validating using clinical notes review, where
phenotype patient matches are manually reviewed, are not sus-
tainable for large LHS infrastructures. While the manual text
extraction of phenotypes can be effective in smaller scenarios,
it is heavily dependent on the human expert and the sample be-
ing analysed, and not well-suited to cross-site studies with dif-
ferences in clinical and operational procedures and opinion be-
tween sites. As such, phenotype libraries should offer novel hy-
brid approaches to validation that encompass structured data,

free text, and ancillary sources for both structured and unstruc-
tured data.
Enable feedback
To facilitate any (informal) user-based validation of stored def-
initions, a phenotype library should support social interactions
between the authors and researchers that use it, with a view to
providing authors with feedback and allowing them to address
this feedback accordingly. Social functionality is supported by
the Phenotype Knowledge Base (PheKB), which currently hosts
around 70 phenotype definitions [12]. For example, within the
library, users are able to post comments or questions against
different phenotypes. A researcher can also request collabora-
tion on the development of phenotype definitions.
However, those users permitted to interact with a phenotype
definition within a portal may be restricted. Within PheKB,
only users with certain organisational affiliations (e.g. the
eMERGE nerwork or the Phenome-Wide Association Studies
(PheWAS) community [38]) are provided with access by default,
with other users required to request an account prior to provid-
ing feedback on definitions. Other portals may restrict access
to different countries or regions.
In many cases, these restrictions are necessary during the de-
velopment of a phenotype. For example, APHRODITE’s defi-
nition repositories are kept private while they are still under
development. However, once developed, definitions can be ac-
cessed through the repository via any web browser or through
an R Shiny app. Based on practices such as these, phenotype
libraries should limit the restrictions they place on those who
can engage with the definitions in phenotype libraries, once
developed. By eliciting comments on the validity of hosted def-
initions from a wider audience, one is likely to gain a greater
understanding as to the quality of a definition.

Sharing and Warehousing

Once a phenotype definition is appropriately reproducible,
portable and validated, it should then be accessible for use by
others. While the traditional and default role of a phenotype
library is to provide such access, this can be optimised, as dis-
cussed in the following sections.
Expose a standard API
To maximise accessibility, a phenotype library should facilitate
user interactions via multiple interfaces. The definitions in a
library are usually available via a single interface: a graphical
front-end. While this provides a reasonable baseline for acces-
sibility, it does not maximise it. For example, a user cannot
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Figure 4. Overview of the services that constitute the HDR UK phenotype li-
brary

instruct a piece of software to interact with the library, to in-
clude definitions directly within a piece of code, resulting in
potential inconsistencies arising from manual entry. Similarly,
existing software systems, such as decision-support systems,
cannot autonomously access phenotypic information. Perhaps
most importantly, a lack of programmatic accessibility means
that one library cannot easily access the functionality of an-
other in order to provide complimentary functionality.
To address these issue, phenotype libraries should offer API-
level web services that (at a minimum) duplicate the function-
ality available in a user interface. In doing so, several con-
siderations should be made. Firstly, the level of API access
needs to be considered, including whether to provide access
only to trusted partners, and thus provide suitable authentica-
tion mechanisms (e.g. OAuth), or whether to make the API
publicly accessible. The selection of the type of API level ac-
cess provided to the functionality of the web resource should
be subject to the policy of the organisation developing the li-
brary. Secondly, the protocol used to facilitate communication
with the API should be considered, such as Remote Procedure
Call (RPC), Service Object Access Protocol (SOAP) and Repre-
sentation State Transfer (REST). REST is a simple and widely
adopted specification model [39], and is thus the technology
that is likely to be most attractive when constructing a library
API. Next, to support programmatic access and enable defini-
tions to be differentiated automatically, a formal identification
system should be established for each definition. The most
straightforward way to this is to leverage the UUID attributed
to each phenotype version.
The functionality of the API itself also needs to be considered.
In [1], the authors propose that an API service should be used to
construct phenotype definitions for the purpose of defining in-
clusion and exclusion criteria for clinical research trials. Build-
ing on this outline, we consider several additional API level use
cases, including: searching phenotype definitions, extracting
a specific phenotype definition, submitting a new phenotype
definition, submitting a new use case for an existing pheno-
type definition or validating an existing definition and linking
a phenotype definition with a data source, and vice-versa. Ex-
amples of specific functionality that an API level phenomics
resource should support within each of these use cases is given
in Table 3.
The benefits of API functionality are evident in the CALIBER,
Phenoflow and Concept Library libraries, each of which com-
municate together to collectively form, along with a dataset
Gateway, the HDR UK phenomics resource. As shown in Figure
4, each library operates as service, and collectively these ser-

vices are able to deliver the functionality of a single library to a
user. The services at the core of this library are the Concept Li-
brary and the CALIBER library, each of which store phenotype
definitions. Using provided APIs, the Concept Library is able to
import definitions from the CALIBER library, enabling pheno-
types to be both formally stored and validated across both ser-
vices, respectively. Similarly, the Phenoflow service – also ca-
pable of automatically importing and representing definitions
using a workflow-based model, and generating a correspond-
ing computable form for execution against a local dataset – is
able to import definitions from both the Concept Library and
CALIBER. Finally, the Gateway service provides access to a com-
prehensive collection of datasets, which are linked to by ser-
vices such as CALIBER, when a given phenotype definition is
present in one of the hosted datasets. Similarly, the Gateway
links back to CALIBER when a phenotype is present in a dataset,
in order to facilitate searches based upon these definitions.
Offer advanced search capabilities
The accessibility of existing phenotypes within a library relies
on its search capabilities. Searches based on given name or
identifier and version should enable simple use cases. For ex-
ample, PheKB offers comprehensive search functionality, with
users not only able to perform searches against the definitions
themselves using given keywords, but also against support-
ing definition content, such as articles, implementations and
datasets. Alternatively, the library has the option to list all
phenotype definitions – including phenotype definitions un-
der development, if the user is logged in – where a user can
instead filter the definitions returned after the fact, based on
properties such as the authoring institution.
While the search functionality offered by PheKB is helpful,
more advanced search capabilities should be supported to fa-
cilitate both more complex cases and improved information
retrieval. This includes searches based on specific codes, or
groups of codes, or an approximate pattern matching, based on
regular patterns or even text similarity. Synonyms (including
abbreviations and acronyms) may also be used as a mechanism
to improve search results over keyword searches. For example,
a search for ‘diabetes’ would likely fail to find a phenotype that
refers to ‘T2DM’ throughout, although ‘T2DM’ is a recognised
abbreviation that can be semantically linked via the UMLS.
Even more advanced capabilities might include searches em-
ploying semantic similarity between a given set of concepts
and the stored phenotypes supported by phenotype ontologies
[40]. This could enable the discovery of semantically identical
or closely related concepts within the library. Similarly, simi-
larity metrics between phenotype definitions, facilitated by the
adoption of a formal phenotype model, are likely assist in scal-
able searches across different repositories, whereby a partial
match may indicate a usable cohort definition to investigate.
Include comprehensive metadata
The search and browse features described must be supported
by appropriate metadata, which can be used to describe both
the subject and format of phenotypes in ways that make them
findable to users with specific research or clinical needs. Such
definitions we might refer to as ‘FAIR Phenotypes’ [41]. To
achieve this, each phenotype definition should include struc-
tured data that describes the subject (i.e., clinical condition)
and intent (screening, etc.) of the definition, as well as the
source, date, publisher, etc., similar to the tagging of resources
in traditional libraries. Additionally, each component of the
phenotype model (e.g., underlying data model, data elements,
value sets, code lists, coding language) must be specified with
an assigned code or value so that users can search on these
features or have them displayed when browsing a phenotype
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Figure 5. Metadata structure adopted by CALIBER (left) and PheKB (right).

library or repository. Examples of existing libraries that look
to attribute appropriate metadata to stored definitions include
CALIBER and PheKB (Figure 5).

In addition to supporting search, the use of metadata is impor-
tant for a number of other reasons. Firstly, metadata can make
clear characteristics of phenotypes related to their accessibility,
interoperability and re-use. To this end, as part of the Mo-
bilizing Computable Biomedical Knowledge (MCBK) initiative,
Alper and Flynn et al. have proposed 12 categories of metadata
that are required to fully represent knowledge objects, includ-
ing phenotypes, for FAIR principled criteria [42]. In addition,
metadata fields that describe the versioning aspects of a def-
inition can be populated to further formalise the provenance
of the phenotypes in a collection. Next, as the intent, develop-
ment, and validation of phenotypes are essential for potential
implementers to understand in order to trust the quality and
appropriateness of a phenotype for a new purpose, represent-
ing aspects of the pheontype development and validation pro-
cess formally is critical. To do this, the Trust and Policy Work
Group of the Patient-Centered Clinical Decision Support Learn-
ing Network defined an extensive set of metadata for trust [43].
Finally, metadata can be used to formally represent many as-
pects of the implementation and tooling described, enabling
potential implementers to search on these features, such as
language, and possibly support automated translations.

While more and robust metadata are beneficial from a library
perspective, populating these metadata accurately and consis-
tently requires resources, and the extent and detail of meta-
data will depend upon a balance to adequately meet the needs
at the expense that the library sponsor will bear. One poten-
tial solution to this issue is to automatically generate metadata,
which is the approach taken in data management platforms
[44]. Overall, time will show how the community of phenotype
users can develop consensus on a minimum set of metadata, li-
brary or indexing best practices to complement and formalise
the desiderata described here, and also build a compelling value
case for their use to support high quality phenotyping across
countries.

Conclusions

While making significant advances, computable phenotyping
is still at an early stage where methods and repositories are
emerging to meet the needs of a range of medical research do-
mains, with little methodological consensus. As tooling grad-
ually matures beyond the realm of early adopters to become
usable for a broad spectrum of researchers and implementers,
the focus needs to move away from one-size-fits-all ‘perfect’
phenotype definitions to acknowledging the diversity of phe-
notype application areas, the resultant explosion in the num-
bers and variations of phenotypes to be stored – in particu-
lar the arrival of advanced probabilistic and NLP-based pheno-
types to sit alongside traditional rule-based definitions – and
the challenges of deploying them in the real world, especially
in the presence of high-throughput requirements. Portability
and reproducibility are essential in addressing this scaling-up,
with techniques needed to move phenotype definitions between
both data sources and different health settings.
Phenotype libraries offer a natural meeting point of these mul-
tiple use-cases and domains to support high-quality pheno-
type definitions. In terms of designing phenotype libraries as
technical entities that enable the storage and retrieval of def-
initions, there is a clear need to track the evolution of pheno-
type definitions as they are authored, support advanced search
techniques that enable these definitions to be located by others,
and establish a collaborative process through which the validity
of definitions can be critiqued. All of this functionality should
be accessible within a library via multiple channels, in partic-
ular comprehensive, standards-based API functionality to en-
sure interoperability. Authoring and storing phenotype defini-
tions according to a standard model is another aspect through
which phenotype libraries can contribute to definition repro-
ducibility. The model adopted by a phenotype library should
exist at the correct level of abstraction, prioritising modelling
languages over executable programming languages, and offset
this, in terms of implementation, by incorporating key imple-
mentation information, and improving clarity through multi-
dimensional descriptions. Finally, a phenotype library should
encourage the use of phenotype definitions in new use cases
by supporting the validation process, both automatically, and
through the definition of a structured validation process.
The impact of supporting the development and implementa-
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tion of high-quality phenotype definitions is significant, par-
ticularly as these definitions provide efficient access to accurate
cohort data by overcoming many of the complexities associated
with patient datasets. Cohort data not only supports research
studies (e.g. the identification of predictors for a certain con-
dition), but also the provision of decision support (e.g. access
to the medical histories of one or more individuals) and clin-
ical trials (e.g. the establishment of trial cohorts). The use
of computable phenotypes to determine cohorts from complex
datasets for these purposes can be complemented by using tra-
ditional big data techniques to manage scale; by an increased
focus on multi-morbidities – the complex interactions of dis-
eases in patients – which are a crucial factor in personalised
decision support systems; and by N-of-1 clinical trial design.
Overall, running through these desiderata is the awareness that
cross-domain sharing of phenotype definitions can only occur
through curated libraries that evolve in a controlled manner.
Such libraries have to be 1) clinically and scientifically valid;
2) technically realisable; and 3) usable by researchers in differ-
ent domains. Through the usage of our desiderata, we believe
the current and future phenotype libraries will deliver on these
three fronts.

Declarations

List of abbreviations

Automated PHenotype Routine for Observational Definition,
Identification, Training and Evaluation (APHRODITE); Clinical
Quality Language (CQL); Electronic Health Record (EHR); Mo-
bilizing Computable Biomedical Knowledge (MCBK); Observa-
tional Health Data Sciences and Informatics (OHDSI); PhEMA
Authoring Tool (PhAT); Phenotype Knowledge Base (PheKB);
Phenotyping pipeline (PheP); Phenome-Wide Association Stud-
ies (PheWAS); Phenotype Execution and Modelling Architecture
(PhEMA); Quality Data Model (QDM).

Consent for publication

Not applicable.

Competing Interests

The author(s) declare that they have no competing interests.

Funding

This work was supported by Health Data Research UK, which
receives its funding from Health Data Research UK Ltd (NIWA1;
GVG and AK: HDRUK/CFC/01) funded by the UK Medical Re-
search Council (MRC), Engineering and Physical Sciences Re-
search Council, Economic and Social Research Council, Depart-
ment of Health and Social Care (England), Chief Scientist Of-
fice of the Scottish Government Health and Social Care Direc-
torates, Health and Social Care Research and Development Di-
vision (Welsh Government), Public Health Agency (Northern
Ireland), British Heart Foundation, and the Wellcome Trust. In
addtion, SD acknowledges that this study is part of the Big-
Data@Heart programme that has received funding from the
Innovative Medicines Initiative 2 Joint Undertaking (116074),
which receives support from the European Union’s Horizon
2020 research and innovation programme (H2020) and the Eu-
ropean Federation of Pharmaceutical Industries and Associa-
tions (EFPIA). MC and VC are supported by the National In-
stitute for Health Research (NIHR) Biomedical Research Cen-

tre based at Guy’s and St Thomas’ National Health Service
Foundation Trust and King’s College London, and the Public
Health and Multimorbidity Theme of the National Institute
for Health Research’s Applied Research Collaboration (ARC)
South London. GVG and AK also acknowledge support from
the NIHR Birmingham Experimental Cancer Medicine Centre
(ECMC), the NIHR Birmingham Surgical Reconstruction Micro-
biology Research Centre (SRMRC) and the NIHR Birmingham
Biomedical Research Centre, as well as Nanocommons H2020
(731032) and an MRC fellowship grant (MR/S003991/1). HP
acknowledges support from European Molecular Biology Lab-
oratory (EMBL) core funds. LVR and JAP acknowledge sup-
port from the National Institute of General Medical Sciences
(R01GM105688) and the National Human Genome Research In-
stitute (U01HG011169).
The opinions in this paper are those of the authors and do not
necessarily reflect the opinions of the funders.

Authors’ Contributions

MC: conceptualisation, methodology, investigation, writing -
original draft; SM: conceptualisation, methodology, investi-
gation, writing - original draft; LVR: methodology, writing -
original draft; AK: investigation, writing - original draft; GVG:
investigation, writing - original draft; CG: investigation, writ-
ing - review & editing; DT: investigation, writing - review
& editing; JAP: methodology, writing - review & editing; HP:
writing - review & editing; RR: investigation, writing - original
draft, writing - review & editing; EJ: funding acquisition, writ-
ing - review & editing; SD: methodology, funding acquisition,
writing - review & editing; VC: funding acquisition, writing -
original draft, writing - review & editing;

Acknowledgements

The authors wish to acknowledge the involvement of Dr
Susheel Varma (HDR UK) and Dr Elliot Fairweather (King’s Col-
lege London) in the development of this work.

References

1. Richesson R, Smerek M, Cameron CB. A Framework to
Support the Sharing and Re-Use of Computable Phenotype
Definitions Across Health Care Delivery and Clinical Re-
search Applications. eGEMs (Generating Evidence & Meth-
ods to improve patient outcomes) 2016;4(3):10–24.

2. Weaver J, Potvien A, Swerdel J, Voss EA, Hester L, Shoaibi A,
et al. Best Practices for Creating the Standardized Content
of an Entry in the OHDSI Phenotype Library. In: 5th OHDSI
Annual Symposium; 2019. p. 46.

3. Cho K, Introduction to the VA Phenomics Library (VAPhe-
Lib);. Available at: "https://www.hsrd.research.va.gov/
for_researchers/cyber_seminars/archives/3814-notes.
pdf", Accessed on: 2021-02-12.

4. Meineke F, Stäubert S, Löbe M, Uciteli A, Löffler M. Design
and Concept of the SMITH Phenotyping Pipeline. Studies
in health technology and informatics 2019;267:164–172.

5. Clarivate Analytics, Web of science;. Available at: http:
//www.webofknowledge.com, Accessed 2021-02-15.

6. Pacheco JA, Rasmussen LV, Kiefer RC, Campion TR, Speltz
P, Carroll RJ, et al. A case study evaluating the portability
of an executable computable phenotype algorithm across
multiple institutions and electronic health record environ-
ments. Journal of the American Medical Informatics Asso-
ciation 2018;25(11):1540–1546.

"https://www.hsrd.research.va.gov/for_researchers/cyber_seminars/archives/3814-notes.pdf"
"https://www.hsrd.research.va.gov/for_researchers/cyber_seminars/archives/3814-notes.pdf"
"https://www.hsrd.research.va.gov/for_researchers/cyber_seminars/archives/3814-notes.pdf"
http://www.webofknowledge.com
http://www.webofknowledge.com


12 | GigaScience, 0000, Vol. 00, No. 0

7. Brandt PS, Kiefer RC, Pacheco JA, Adekkanattu P, Sholle
ET, Ahmad FS, et al. Toward cross-platform electronic
health record-driven phenotyping using Clinical Quality
Language. Learning Health Systems 2020;4(4):9–17.

8. Hripcsak G, Shang N, Peissig PL, Rasmussen LV, Liu C,
Benoit B, et al. Facilitating phenotype transfer using a
common data model. Journal of Biomedical Informatics
2019;96:120–127.

9. Banda JM, Halpern Y, Sontag D, Shah NH. Electronic phe-
notyping with APHRODITE and the Observational Health
Sciences and Informatics (OHDSI) data network. In: Pro-
ceedings of AMIA Joint Summits on Translational Science;
2017. p. 48–57.

10. Mo H, Pacheco JA, Rasmussen LV, Speltz P, Pathak J,
Denny JC, et al. A Prototype for Executable and Portable
Electronic Clinical Quality Measures Using the KNIME An-
alytics Platform. In: Proceedings of AMIA Joint Summits
on Translational Science, vol. 2015; 2015. p. 127–31.

11. Kukhareva P, Staes C, Noonan KW, Mueller HL, Warner P,
Shields DE, et al. Single-reviewer electronic phenotyping
validation in operational settings: Comparison of strate-
gies and recommendations. Journal of Biomedical Infor-
matics 2017;66(C):1–10.

12. Kirby JC, Speltz P, Rasmussen LV, Basford M, Gottesman
O, Peissig PL, et al. PheKB: a catalog and workflow for cre-
ating electronic phenotype algorithms for transportability.
Journal of the American Medical Informatics Association
2016;23(6):1046–1052.

13. Denaxas S, Gonzalez-Izquierdo A, Direk K, Fitzpatrick NK,
Fatemifar G, Banerjee A, et al. UK phenomics platform for
developing and validating electronic health record pheno-
types: CALIBER. Journal of the American Medical Infor-
matics Association 2019;26(12):1545–1559.

14. Chapman M, Rasmussen L, Pacheco J, Curcin V. Phenoflow:
A Microservice Architecture for Portable Workflow-based
Phenotype Definitions. In: Proceedings of AMIA Joint
Summits on Translational Science; 2021. p. 142–151.

15. SAIL Databank, The Concept Library;. Available at:
https://conceptlibrary.demo.saildatabank.com/home/, Ac-
cessed on: 2021-02-11.

16. Boxwala AA, Rocha BH, Maviglia S, Kashyap V, Meltzer
S, Kim J, et al. A multi-layered framework for dissem-
inating knowledge for computer-based decision support.
Journal of the American Medical Informatics Association
2011;18(Supplement_1):132–139.

17. Curcin V. Why does human phenomics matter today?
Learning Health Systems 2020;4(4):1–3.

18. Sá-Sousa A, Jacinto T, Azevedo LF, Morais-Almeida M,
Robalo-Cordeiro C, Bugalho-Almeida A, et al. Opera-
tional definitions of asthma in recent epidemiological
studies are inconsistent. Clinical and Translational Allergy
2014;4(1):24.

19. Mo H, Thompson WK, Rasmussen LV, Pacheco JA, Jiang G,
Kiefer R, et al. Desiderata for computable representations
of electronic health records-driven phenotype algorithms.
Journal of the American Medical Informatics Association
2015;22(6):1220–1230.

20. Papez V, Denaxas S, Hemingway H. Evaluating OpenEHR
for Storing Computable Representations of Electronic
Health Record Phenotyping Algorithms. In: Proceedings

- IEEE Symposium on Computer-Based Medical Systems;
2017. p. 509–514.

21. Jiang G, Prud’Hommeaux E, Xiao G, Solbrig HR. Develop-
ing A Semantic Web-based Framework for Executing the
Clinical Quality Language Using FHIR. In: CEUR Workshop
Proceedings; 2017. p. 126–130.

22. Agarwal V, Podchiyska T, Banda JM, Goel V, Leung TI,
Minty EP, et al. Learning statistical models of phenotypes

using noisy labeled training data. Journal of the American
Medical Informatics Association 2016;23(6):1166–1173.

23. Yu S, Ma Y, Gronsbell J, Cai T, Ananthakrishnan AN, Gainer
VS, et al. Enabling phenotypic big data with PheNorm.
Journal of the American Medical Informatics Association
2018;25(1):54–60.

24. Banda JM, Seneviratne M, Hernandez-Boussard T, Shah
NH. Advances in electronic phenotyping: from rule-based
definitions to machine learning models. Annual review of
biomedical data science 2018;1:53–68.

25. Zheng NS, Feng Q, Eric Kerchberger V, Zhao J, Edwards TL,
Cox NJ, et al. PheMap: A multi-resource knowledge base
for high-throughput phenotyping within electronic health
records. Journal of the American Medical Informatics As-
sociation 2020;27(11):1675–1687.

26. Cimino JJ. Desiderata for controlled medical vocabularies
in the twenty-first century. Methods of Information in
Medicine 1998;37(04/05):394–403.

27. Banda JM, Williams A, Kashyap M, Seneviratne MG,
Potvien A, Duke J, et al. FAIR Phenotyping with
APHRODITE. In: 5th OHDSI Annual Symposium; 2019.
p. 45.

28. Curcin V, Fairweather E, Danger R, Corrigan D. Templates
as a method for implementing data provenance in deci-
sion support systems. Journal of Biomedical Informatics
2017;65:1–21.

29. Moreau L, Missier P, Belhajjame K, B’Far R, Cheney J, Cop-
pens S, et al. PROV-DM: The PROV Data Model. World
Wide Web Consortium; 2013.

30. Fairweather E, Chapman M, Curcin V. A delayed instan-
tiation approach to template-driven provenance for elec-
tronic health record phenotyping. In: Proceedings of the
9th International Provenance and Annotations Workshop,
IPAW 2021 (In press); 2021. .

31. Castro VM, Minnier J, Murphy SN, Kohane I, Churchill SE,
Gainer V, et al. Validation of electronic health record phe-
notyping of bipolar disorder cases and controls. American
Journal of Psychiatry 2015;172(4):363–372.

32. FinnGen, Risteys: Explore FinnGen data at the phenotype
level;. Available at: https://risteys.finngen.fi/, Accessed
2021-03-05.

33. Xu Z, Wang F, Adekkanattu P, Bose B, Vekaria V, Brandt P,
et al. Subphenotyping depression using machine learning
and electronic health records. Learning Health Systems
2020;4(4):40–49.

34. Chapman M, Domínguez J, Fairweather E, Delaney BC,
Curcin V. Using Computable Phenotypes in Point-of-Care
Clinical Trial Recruitment. In: Digital Personalized Health
and Medicine - Proceedings of MIE 2021 (In press); 2021.
.

35. McCarthy P, funpack. Zenodo; 2021. 10.5281/zenodo.
4646309.

36. Knoll C, Banda J, Rao G, Chen R, Swerdel J. OHDSI Gold
Standard Phenotype Library. Observational Health Data
Sciences and Informatics; 2019.

37. Swerdel JN, Hripcsak G, Ryan PB. PheValuator: Develop-
ment and evaluation of a phenotype algorithm evaluator.
Journal of Biomedical Informatics 2019;97.

38. Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache
L, Brown-Gentry K, et al. PheWAS: demonstrating the fea-
sibility of a phenome-wide scan to discover gene–disease
associations. Bioinformatics 2010;26(9):1205–1210.

39. Fielding RT. Architectural styles and the design of
network-based software architectures. PhD thesis, Uni-
versity of California, Irvine; 2000.

40. Gkoutos GV, Schofield PN, Hoehndorf R. The anatomy of
phenotype ontologies: principles, properties and applica-
tions. Briefings in bioinformatics 2018;19(5):1008–1021.

https://conceptlibrary.demo.saildatabank.com/home/
https://risteys.finngen.fi/
10.5281/zenodo.4646309
10.5281/zenodo.4646309


M. Chapman et al. | 13

41. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G,
Axton M, Baak A, et al. The FAIR Guiding Principles for
scientific data management and stewardship. Scientific
Data 2016;3(1):1–9.

42. Alper B, Flynn A, Bray B. Categorizing Metadata to Help
Mobilize Computable Biomedical Knowledge. Learning
Health Systems (Under Review) 2021;.

43. Richardson JE, Middleton B, Platt JE, Blumenfeld BH.
Building and maintaining trust in clinical decision support:
Recommendations from the Patient-Centered CDS Learn-
ing Network. Learning Health Systems 2020;4(2):7–14.

44. Nind T, Galloway J, McAllister G, Scobbie D, Bonney W,
Hall C, et al. The research data management platform
(RDMP): A novel, process driven, open-source tool for the
management of longitudinal cohorts of clinical data. Giga-
Science 2018;7(7):1–12.



14 | GigaScience, 0000, Vol. 00, No. 0

Ta
bl
e
3.

Sug
ges

ted
libr

ary
AP

Ifu
nct

ion
s.A

llr
equ

est
sm

ade
in,

and
res

pon
ses

ret
urn

ed
in,

YA
ML

+M
ark

dow
n/J

SO
N/X

ML
for

ma
ts.

Fu
nc
ti
on

Us
er
Ac
ce
ss
Le
ve
l

D
es
cr
ip
ti
on

Sea
rch

Sim
ple

Sea
rch

Pub
lic

Af
ree

tex
ts

ear
ch,

exa
mi

nin
gt

he
ent

ire
con

ten
ts

of
the

por
tal

and
ret

urn
ing

al
ist

of
ph

eno
typ

es
tha

t
ma

tch
the

sea
rch

cri
ter

ia.
Ad

van
ced

Sea
rch

Pub
lic

Af
ree

tex
tse

arc
h,

exa
mi

nin
gs

pec
ifie

ds
ect

ion
so

fth
ep

ort
al(

e.g
.,m

ain
con

ten
t,j

ust
me

tad
ata

,et
c.)

and
ret

urn
ing

ali
sto

fp
hen

oty
pes

tha
tm

atc
ht

he
sea

rch
cri

ter
ia.

Ph
eno

typ
ee

xtr
act

ion
Ext

rac
tin

gs
pec

ific
ph

eno
typ

e(s
)

Pub
lic

Giv
en

ap
hen

oty
pe

ID
sup

pli
ed

by
au

ser
(or

gen
era

ted
by

the
pla

tfo
rm

),t
he

AP
Ire

tur
ns

the
ph

eno
typ

e
def

ini
tio

n.
Ext

rac
tin

ga
llp

hen
oty

pes
Pub

lic
Ret

urn
af

ull
list

of
ph

eno
typ

es.
Ad

din
gn

ew
ph

eno
typ

e(s
)

Au
tho

ris
ed

use
rs

On
lya

uth
ori

sed
use

rs
sho

uld
be

allo
we

dt
oe

ith
er

sub
mi

ta
sin

gle
or

gro
up

of
ph

eno
typ

ed
efin

itio
ns.

Up
dat

ing
a

ph
eno

typ
e

def
ini

tio
n

Up
dat

ing
the

con
ten

ts
of

as
pe-

cifi
cp

hen
oty

pe
Au

tho
ris

ed
use

rs
Eac

ha
spe

cto
fa

ph
eno

typ
ed

efin
itio

n–
inc

lud
ing

con
stit

uen
tco

del
ists

,li
nk

sto
dat

ase
tsw

her
eth

atp
he-

not
ype

app
ear

s,a
nd

oth
er

me
tad

ata
–c

an
be

upd
ate

db
yp

ass
ing

ap
hen

oty
pe

ID
and

the
nam

es
of

the
fiel

ds
to

upd
ate

and
the

irn
ew

val
ues

.E
ach

upd
ate

sho
uld

ma
rk

av
ers

ion
nu

mb
er

to
kee

pr
eco

rd
of

any
upd

ate
so

ver
tim

e.
Up

dat
ing

ac
om

ple
te

ph
eno

typ
e

wit
hm

ult
ipl

efe
atu

res
Au

tho
ris

ed
use

rs
Up

dat
ea

ph
eno

typ
ec

ont
ent

sb
yp

ass
ing

ap
hen

oty
pe

ID
and

sub
mi

ttin
ga

nu
pda

ted
ph

eno
typ

ed
efin

itio
n

file
to

rep
lac

eth
ep

rev
iou

sv
ers

ion
for

pub
lic

vie
w.

Sub
mi

ssi
on

of
an

ew
val

ida
tio

n
cas

es
tud

yfo
ran

exi
stin

gp
hen

o-
typ

e
Au

tho
ris

ed
use

rs
Ad

din
ga

new
use

cas
eto

val
ida

tea
ne

xis
tin

gp
hen

oty
pe

(id
ent

ifie
db

ya
ph

eno
typ

eID
)b

yp
ass

ing
af

ile.

De
let

ion
of

ap
hen

oty
pe

Rem
ovi

ng
a

ph
eno

typ
e

fro
m

pub
lic

vie
w(

sof
td

ele
te)

Pri
vat

et
op

ort
ala

dm
in-

istr
ato

rs
An

adm
ini

str
ato

ro
fth

ep
ort

alc
an

hid
ea

ph
eno

typ
ed

efin
itio

nb
yp

rov
idi

ng
ap

hen
oty

pe
ID.

Rem
ovi

ng
ap

hen
oty

pe
fro

m
the

libr
ary

(ha
rd

del
ete

).
Pri

vat
et

op
ort

ala
dm

in-
istr

ato
rs

An
adm

ini
str

ato
ro

fth
ep

ort
alc

an
del

ete
ap

hen
oty

pe
def

ini
tio

ne
nti

rel
yb

yp
rov

idi
ng

ap
hen

oty
pe

ID.


